Значение фотосинтеза кратко. Значение фотосинтеза. Условия, необходимые для фотосинтеза

Процесс фотосинтеза является одним из важнейших биологических процессов, протекающих в природе, ведь именно благодаря ему происходит образование органических веществ из углекислого газа и воды под действием света, именно это явление и называют фотосинтезом. И что самое важное, в процессе фотосинтеза происходит выделение , жизненно необходимого для существования жизни на нашей удивительной планете.

История открытия фотосинтеза

История открытия явления фотосинтеза уходит своими корнями на четыре века в прошлое, когда в далеком 1600 году некий бельгийский ученый Ян Ван Гельмонт поставил не сложный эксперимент. Он поместил веточку ивы (предварительно записав ее начальный вес) в мешок, в котором также находилось 80 кг земли. А затем на протяжении пяти лет растение поливалось исключительно водой. Каким же было удивление ученого, когда по прошествии пяти лет вес растения увеличился на 60 кг, при том, что масса земли уменьшилась всего лишь на 50 грамм, откуда взялась столь внушительная прибавка в весе, так и оставалось для ученого загадкой.

Следующий важный и интересный эксперимент, ставший преддверием к открытию фотосинтеза, был поставлен английским ученым Джозефом Пристли в 1771 году (любопытно, что по роду своей профессии мистер Пристли был священником англиканской церкви, но в историю вошел именно как выдающийся ученый). Что же сделал мистер Пристли? Он поместил мышь под колпак и через пять дней та умерла. Затем он снова поместил еще одну мышь под колпак, но в этот раз вместе с мышкой под колпаком была веточка мяты и в результате мышь осталась живой. Полученный результат навел ученого на мысль, о том, что существует некий процесс, противоположный дыханию. Еще одним важным выводом этого эксперимента стало открытие кислорода, как жизненно необходимого всем живим существам (первая мышка умерла от его отсутствия, вторая же выжила, благодаря веточке мяты, которая в процессе фотосинтеза как раз создала кислород).

Так был установлен факт, что зеленые части растений способны выделять кислород. Затем уже в 1782 году швейцарский ученый Жан Сенебье доказал, что углекислый газ под воздействием света разлагается в зеленых растений – фактически была открыта еще одна сторона фотосинтеза. Затем еще через 5 лет французский ученый Жак Бусенго обнаружил, что поглощение растениями воды происходит и при синтезе органических веществ.

И финальным аккордом в череде научных открытий связанных с явлением фотосинтеза стало открытие немецкого ботаника Юлиуса Сакса, которому в 1864 году удалось доказать, что объем потребляемого углекислого газа и выделяемого кислорода происходит в пропорции 1:1.

Значение фотосинтеза в жизни человека

Если представить образно, то лист любого растения можно сравнить с маленькой лабораторией, окна которой выходят на солнечную сторону. В этой самой лаборатории идет образование органических веществ и кислорода, являющегося основой для существования органической жизни на Земле. Ведь без кислорода и фотосинтеза на Земле просто бы не существовало жизни.

Но если фотосинтез столь важен для жизни и выделения кислорода, то как живут люди (да и не только люди), например в пустыне, где минимум зеленых растений, или например, в индустриальном городе, где деревья редкость. Дело в том, что на долю наземных растений приходится всего 20% выделяемого в атмосферу кислорода, остальные же 80% выделяются морскими и океанскими водорослями, недаром ведь мировой океан порой называю «легкими нашей планеты».

Формула фотосинтеза

Общую формулу фотосинтеза можно записать следующим образом:

Вода + Углекислый газ + Свет > Углеводы + Кислород

А вот такой вид имеет формула химической реакции фотосинтеза

6СО 2 + 6Н 2 О = С6Н 12 О 6 + 6О 2

Значение фотосинтеза для растений

А теперь попробуем ответить на вопрос, для чего нужен фотосинтез растениям. В действительности обеспечение кислородом атмосферы нашей планеты, далеко не единственная причина протекания фотосинтеза, этот биологический процесс жизненно необходим не только людям и животным, но и самим растениям, ведь органические вещества, которые образуются в ходе фотосинтеза, составляют основу жизнедеятельности растений.

Как происходит фотосинтез

Главным двигателем фотосинтеза является хлорофилл – специальный пигмент, содержащийся в клетках растений, который помимо всего прочего отвечает за зеленую окрасу деревьев и прочих растений. Хлорофилл представляет собой сложное органическое соединение, обладающее к тому же важным свойством – способностью к поглощению солнечного света. Поглощая его, именно хлорофилл приводит в действие ту маленькую биохимическую лабораторию, содержащуюся в каждом маленьком листочке, в каждой травине и каждой водоросли. Далее происходит фотосинтеза (формулу смотрите выше) в ходе которой и происходит преображение воды и углекислого газа в необходимые растениям углеводы и необходимый всему живому кислород. Механизмы фотосинтеза являются гениальным творением природы.

Фазы фотосинтеза

Также процесс фотосинтеза состоит из двух стадий: светлой и темновой. И ниже мы детально напишем о каждой из них.

В студенческие годы у меня ушло несколько часов на то, чтобы наизусть запомнить всю последовательность реакций, протекающих в ходе фотосинтеза. Но что, если оторваться от сложностей химии и взглянуть на этот процесс с более практической точки зрения, дабы разобраться, что даёт фотосинтез для природы, в чём его непосредственный смысл?

Немного химии

Для начала стоит всё-таки кратко описать протекающие процессы. Для полноценного фотосинтеза необходимы следующие важные элементы:

  • хлорофилл;
  • углекислый газ;
  • солнечный свет;
  • дополнительные элементы из почвы / окружающей среды.

Растение при помощи хлорофилла улавливает свет, после чего, используя минеральные вещества преобразует углекислый газ в кислород, попутно получая различные вещества, такие как глюкоза и крахмал. Именно получение этих веществ - конечная цель растений, а вот получение кислорода является скорее побочным эффектом.


Роль фотосинтеза для атмосферы

Хотя кислород лишь вторичный продукт, именно им дышим мы и большинство других живых существ на земле. Если бы не фотосинтез - эволюция не смогла бы зайти так далеко. Не стало бы таких сложных организмов, как человек. Если говорить максимально упрощённо - растения при помощи фотосинтеза создают пригодный для дыхания и жизни на Земле воздух.

Интересен тот факт, что растения тоже дышат, как и все организмы, и им также нужен создаваемый ими кислород!


Роль фотосинтеза в цепи питания

Только растения улавливают единственный доступный на нашей планете источник органической энергии - солнечный свет. При помощи фотосинтеза они создают упомянутые выше питательные вещества. Позже, по цепи питания, эти вещества распространяются дальше: от растений к травоядным, затем к хищникам, от них к падальщикам и бактериям, перерабатывающим останки.

В конце я вспомнил слова великого русского ученого, Климента Артемьевича Тимирязева:

Все органические вещества, где-бы они не встречались, произошли от веществ, выработанных листом.

Помимо этого, великий учёный называл фотосинтез по-настоящему космическим процессом, с чем трудно не согласиться.

Фотосинтез - это процесс синтеза органических веществ из неорганических за счет энергии света. В подавляющем большинстве случаев фотосинтез осуществляют растения с помощью таких клеточных органелл как хлоропласты , содержащих зеленый пигмент хлорофилл .

Если бы растения не были способны к синтезу органики, то почти всем остальным организмам на Земле нечем было бы питаться, так как животные, грибы и многие бактерии не могут синтезировать органические вещества из неорганических. Они лишь поглощают готовые, расщепляют их на более простые, из которых снова собирают сложные, но уже характерные для своего тела.

Так обстоит дело, если говорить о фотосинтезе и его роли совсем кратко. Чтобы понять фотосинтез, нужно сказать больше: какие конкретно неорганические вещества используются, как происходит синтез?

Для фотосинтеза нужны два неорганических вещества - углекислый газ (CO 2) и вода (H 2 O). Первый поглощается из воздуха надземными частями растений в основном через устьица. Вода - из почвы, откуда доставляется в фотосинтезирующие клетки проводящей системой растений. Также для фотосинтеза нужна энергия фотонов (hν), но их нельзя отнести к веществу.

В общей сложности в результате фотосинтеза образуется органическое вещество и кислород (O 2). Обычно под органическим веществом чаще всего имеют в виду глюкозу (C 6 H 12 O 6).

Органические соединения большей частью состоят из атомов углерода, водорода и кислорода. Именно они содержатся в углекислом газе и воде. Однако при фотосинтезе происходит выделение кислорода. Его атомы берутся из воды.

Кратко и обобщенно уравнение реакции фотосинтеза принято записывать так:

6CO 2 + 6H 2 O → C 6 H 12 O 6 + 6O 2

Но это уравнение не отражает сути фотосинтеза, не делает его понятным. Посмотрите, хотя уравнение сбалансированно, в нем общее количество атомов в свободном кислороде 12. Но мы сказали, что они берутся из воды, а там их только 6.

На самом деле фотосинтез протекает в две фазы. Первая называется световой , вторая - темновой . Такие названия обусловлены тем, что свет нужен только для световой фазы , темновая фаза независима от его наличия, но это не значит, что она идет в темноте. Световая фаза протекает на мембранах тилакоидов хлоропласта , темновая - в строме хлоропласта.

В световую фазу связывания CO 2 не происходит. Происходит лишь улавливание солнечной энергии хлорофилльными комплексами, запасание ее в АТФ , использование энергии на восстановление НАДФ до НАДФ*H 2 . Поток энергии от возбужденного светом хлорофилла обеспечивается электронами, передающимися по электрон-транспортной цепи ферментов, встроенных в мембраны тилакоидов.

Водород для НАДФ берется из воды, которая под действием солнечного света разлагается на атомы кислорода, протоны водорода и электроны. Этот процесс называется фотолизом . Кислород из воды для фотосинтеза не нужен. Атомы кислорода из двух молекул воды соединяются с образованием молекулярного кислорода. Уравнение реакции световой фазы фотосинтеза кратко выглядит так:

H 2 O + (АДФ+Ф) + НАДФ → АТФ + НАДФ*H 2 + ½O 2

Таким образом, выделение кислорода происходит в световую фазу фотосинтеза. Количество молекул АТФ, синтезированных из АДФ и фосфорной кислоты, приходящихся на фотолиз одной молекулы воды, может быть различным: одна или две.

Итак, из световой фазы в темновую поступают АТФ и НАДФ*H 2 . Здесь энергия первого и восстановительная сила второго тратятся на связывание углекислого газа. Этот этап фотосинтеза невозможно объяснить просто и кратко, потому что он протекает не так, что шесть молекул CO 2 объединяются с водородом, высвобождаемым из молекул НАДФ*H 2 , и образуется глюкоза:

6CO 2 + 6НАДФ*H 2 →С 6 H 12 O 6 + 6НАДФ
(реакция идет с затратой энергии АТФ, которая распадается на АДФ и фосфорную кислоту).

Приведенная реакция – лишь упрощение для облегчения понимания. На самом деле молекулы углекислого газа связываются по одной, присоединяются к уже готовому пятиуглеродному органическому веществу. Образуется неустойчивое шестиуглеродное органическое вещество, которое распадается на трехуглеродные молекулы углевода. Часть этих молекул используется на ресинтез исходного пятиуглеродного вещества для связывания CO 2 . Такой ресинтез обеспечивается циклом Кальвина . Меньшая часть молекул углевода, включающего три атома углерода, выходит из цикла. Уже из них и других веществ синтезируются все остальные органические вещества (углеводы, жиры, белки).

То есть на самом деле из темновой фазы фотосинтеза выходят трехуглеродные сахара, а не глюкоза.

Значение фотосинтеза в природе . Отметим следствия фотосинтеза, важные для существования жизни на Земле и для человека: «консервирование» солнечной энергии; образование свободного кислорода; образование разнообразных органических соединений; извлечение из атмосферы углекислого газа.

Солнечный луч — «мимолетный гость нашей планеты» (В. Л. Комаров) - производит какую-то работу только в момент падения, затем рассеивается бесследно и бесполезно для живых существ. Однако часть энергии солнечного луча, упавшего на зеленое растение, усваивается хлорофиллом и используется в процессе фотосинтеза. При этом световая энергия превращается в потенциальную химическую энергию органических веществ — продуктов фотосинтеза. Такая форма энергии устойчива и относительно неподвижна. Она сохраняется до момента распада органических соединений, т. е. неопределенно долго. При полном окислении одной граммолекулы глюкозы выделяется столько же энергии, сколько поглощается при ее образовании — 690 ккал. Таким образом, зеленые растения, используя солнечную энергию в процессе фотосинтеза, запасают ее «впрок». Сущность этого явления хорошо вскрывает образное выражение К.А. Тимирязева, назвавшего растения «консервами солнечных лучей».

Органические вещества сохраняются при некоторых условиях очень долго, иногда многие миллионы лет. При их окислении выделяется и может быть использована энергия солнечных лучей, падавших на Землю в те далекие времена. Тепловая энергия, выделяющаяся при сгорании нефти, угля, торфа, древесины, - все это энергия солнца, усвоенная и преобразованная зелеными растениями.

Источником энергии в животном организме служит пища, которая также содержит в себе «консервированную» энергию Солнца. Жизнь на Земле только от Солнца. А растения — «это те каналы, по которым энергия Солнца вливается в органический мир Земли» (К. А, Тимирязев).

В изучении фотосинтеза, именно его энергетической стороны, огромную роль сыграл выдающийся русский ученый К.А. Тимирязев (1843—1920). Он первым показал, что закон сохранения энергии имеет место и в органическом мире. В те времена это утверждение имело огромное философское и практическое значение. Тимирязеву принадлежит лучшее в мировой литературе популярное изложение вопроса о космической роли зеленых растений.

Один из продуктов фотосинтеза — свободный кислород, необходимый для дыхания почти всех живых существ, В природе имеется и бескислородный (анаэробный) тип дыхания, но намного менее продуктивный: при использовании равных количеств дыхательного материала свободной энергии получается в несколько раз меньше, так как органическое вещество окисляется не до конца. Поэтому понятно, что кислородное (аэробное) дыхание обеспечивает более высокий жизненный уровень, быстрый рост, интенсивное размножение, широкое расселение вида, т. е. все те явления, которые характеризуют биологический прогресс.

Предполагается, что почти весь кислород в атмосфере биологического происхождения. В ранние периоды существования Земли атмосфера планеты имела восстановленный характер. Она состояла из водорода, сероводорода, аммиака, метана. С появлением растений и, следовательно, кислорода и кислородного дыхания органический мир поднялся на новую, более высокую ступень и его эволюция пошла гораздо быстрее. Следовательно, зеленые растения имеют не только сиюминутное значение: выделяя кислород, поддерживают жизнь. Они в известной мере определили характер эволюции органического мира.

Важным следствием фотосинтеза является образование органических соединений. Растения синтезируют углеводы, белки, жиры в огромном разнообразии видов. Эти вещества служат пищей для человека и животных и сырьем для промышленности. Растения образуют каучук, гуттаперчу, эфирные масла, смолы, дубильные вещества, алкалоиды и т, п. Продукты переработки растительного сырья — это ткани, бумага, красители, лекарственные и взрывчатые вещества, искусственное волокно, строительные материалы и многое другое.

Масштаб фотосинтеза огромен. Ежегодно поглощается растениями 15,6-10 10 тонн углекислого газа (1/16 часть мирового запаса) и 220 млрд. тонн воды. Количество органического вещества на Земле составляет 10 14 тонн, причем масса растений относится к массе животных как 2200:1. В этом смысле (как созидатели органического вещества) имеют значение и водные растения, водоросли, населяющие океан, органическая продукция которых в десятки раз превышает продукцию наземных растений.

Служат углекислый газ атмосферы и вода. Для синтеза органических веществ растения используют только неорганические вещества: азотистые, фосфорные, сернистые соединения. Источником азота служат также молекулы атмосферного азота, который способны фиксировать бактерии, живущие в корневых клубеньках, главным образом бобовых растений. Газообразный азот переходит при этом в состав аммиака - NH3 и далее входит в состав аминокислот, белков, нуклеиновых кислот и иных соединений. Органические вещества, которые образуются в фотосинтезирующих клетках из углекислого газа, воды, азота атмосферы и неорганических солей почвы или водных сред, используются всеми живыми существами нашей планеты, которые не способны к фотосинтезу. В число этих существ входят все животные и человек, живущие благодаря трансформированной растениями энергии солнца. Исключение составляют хемосинтезирующие микроорганизмы, о которых речь будет далее Фотосинтезирующие клетки, захватывая углекислый газ из атмосферы, выделяют в нее кислород.

Созданная фотосинтезом атмосфера защищает живое от губительного коротковолнового УФ-излучения ( кислородно-озоновый экран атмосферы). В урожай сельскохозяйственных растений переходит лишь 1-2% солнечной энергии, потери обусловлены неполным поглощением света. Поэтому имеется огромная перспектива повышения урожайности благодаря селекции сортов с высокой эффективностью фотосинтеза, созданию благоприятной для светопоглощения структуры посевов. В связи с этим особенно актуальными становятся разработка теоретических основ управления фотосинтезом, исследование фотосинтеза как целостного процесса.