Меры по снижению антропогенного воздействия. Привет студент. Способы очистки промышленных выбросов в атмосферу

Национальный горный университет

Реферат
по дисциплине
«Экология и охрана окружающей среды»

АНТРОПОГЕННОЕ ВОЗДЕЙСТВИЕ на окружающую среду

Днепропетровск
2010

П Л А Н

    Введение. Актуальность проблемы.
    Виды антропогенного воздействия
    Антропогенное загрязнение атмосферы
    Антропогенное загрязнение воды
    Антропогенное загрязнение почвы
    Радиационное загрязнение среды
    Шумовое загрязнение среды
    Биологическое загрязнение среды
    Методы борьбы с антропогенным воздействием на окружающую среду

ВВЕДЕНИЕ

Современное состояние цивилизации характеризуется быстрыми и неблагоприятными изменениями окружающей среды, как в локальном, так и в глобальном масштабе. Эти изменения однозначно связаны с увеличением антропогенного давления на биосферу. Главным проявлением этого давления является разрушение человеком естественных экосистем в ходе хозяйственной деятельности, объем которой пропорционален экспоненциально растущей численности населения Земли.
Несмотря на однозначную связь между разрушением естественных природных систем и деградацией приемлемой для человека окружающей среды, никаких существенных изменений в стратегии взаимодействия человека и природы не происходит. Можно было бы ожидать, что сигнал о необходимости таких изменений поступит от научной мировой общественности, поскольку именно последняя владеет огромной фактической информацией об особенностях функционирования живых систем и их мощного стабилизирующего воздействия на окружающую среду. Примерами могут служить регуляция режима осадков на суше лесными экосистемами, регуляция концентрации атмосферного углерода экосистемами океана посредством биотического насоса, поддержание глобальной биотой устойчивости приемлемой для жизни среднеглобальной температуры Земли и проч. Однако ученые, готовые предупредить человечество об опасности разрушения (освоения) естественных экосистем и необходимости немедленных мер по сокращению антропогенного воздействия на такие системы, составляют очень небольшую часть научной общественности.
Разрушая естественные сообщества и изменяя генетическую информацию видов в своих целях, человек разрушает биотическое управление окружающей средой и ставит окружающую среду Земли перед угрозой потери устойчивости и быстрого скатывания в непригодные для жизни физически устойчивые состояния.
В то же время современная естественная наука физическую устойчивость приемлемой для жизни окружающей среды принимает как аксиому. Такая парадигма отношения естественной науки к живой природе сформировалась в течение золотого века человечества, когда антропогенное разрушение биосферы было столь слабым, что никаких глобальных процессов неблагоприятного изменения окружающей среды не происходило. Это создавало впечатление того, что пригодная для жизни среда поддерживается сама собой. Это впечатление, облаченное в научные термины, стало основой для адаптационной концепции эволюции, согласно которой организмы не регулируют свою среду, а приспосабливаются к произвольно меняющейся окружающей среде.
В настоящее время среда обитания человека потеряла устойчивость, так как большая часть обеспечивающих эту устойчивость естественных экосистем нарушена. Принципиально важной стала задача определения мощности стабилизирующего воздействия естественных экосистем, чтобы восстановить их до уровня, при котором устойчивость глобальной окружающей среды будет восстановлена. Однако естественная наука продолжает руководствоваться старой парадигмой. Считается, что живые организмы в течение всего периода существования жизни приспосабливались к произвольно меняющейся окружающей среде. Поэтому предполагается, что большая часть из них смогут приспособиться и к современным условиям антропогенного освоения биосферы. Ускоряющееся вымирание многих видов также может рассматриваться как естественный эволюционный процесс, подобный, например, вымиранию динозавров. Именно поэтому до сих пор не существует научно-обоснованной стратегии сохранения биоразнообразия, которое в настоящее время предлагается сохранять в ничтожных по площадях зоопарках и заповедниках. Сколько видов сохранить и каких, решается произвольно, часто на эмоциональной или экономической основе. Такое отсутствие концептуальной поддержки со стороны естественной науки сильно подрывает природоохранные движения.
Иными словами, современная естественная наука поддерживает и оправдывает современное человечество в его эксплутационной политике по отношению к живой природе, несмотря на очевидность того, что эта политика приводит к деградации окружающей среды в глобальном масштабе. Причиной такого положения вещей является запаздывание развития теоретических принципов естественной науки по сравнению с быстро меняющейся ситуацией в мире.

1. Виды антропогенного воздействия

Под антропогенными воздействиями понимают деятельность, связанную с реализацией экономических, военных, рекреационных, культурных и других интересов человека, вносящую физические, химические, биологические и другие изменения в природную среду. По своей природе, глубине и площади распространения, времени действия и характеру приложения они могут быть различными: целенаправленными и стихийными, прямыми и косвенными, длительными и кратковременными, точечными и площадными и т. д.
Антропогенные воздействия на биосферу по их экологическим последствиям разделяют на положительные и отрицательные (негативные). К положительным воздействиям можно отнести воспроизводство природных ресурсов, восстановление запасов подземных вод, полезащитное лесоразведение, рекультивацию земель на месте разработок полезных ископаемых и др.
К отрицательным (негативным) воздействиям на биосферу относят все виды воздействий, создаваемых человеком и угнетающих природу. Небывалые по мощности и разнообразию негативные антропогенные воздействия особенно резко стали проявляться во второй половине XX в. Под их влиянием естественная биота экосистем перестала служить гарантом устойчивости биосферы, как это наблюдалось ранее в течение миллиардов лет.
Отрицательное (негативное) воздействие проявляется в самых разнообразных и масштабных акциях: исчерпании природных ресурсов, вырубке леса на больших площадях, засолении и опустынивании земель, сокращении численности и видов животных и растений и т.д. К числу основных глобальных факторов дестабилизации природной среды относятся:
рост потребления природных ресурсов при их сокращении;
рост населения планеты при сокращении пригодных для обитания территорий;
деградация основных компонентов биосферы, снижение способности природы к самоподдержанию;
возможные изменения климата и истощение озонового слоя Земли;
сокращение биологического разнообразия;
возрастание экологического ущерба от стихийных бедствий и техногенных катастроф;
недостаточный уровень координации действий мирового сообщества в области решения экологических проблем.
Главнейшим и наиболее распространенным видом отрицательного воздействия человека на биосферу является загрязнение. Большинство острейших экологических ситуаций в мире так или иначе связаны с загрязнением окружающей природной среды (Чернобыль, кислотные дожди, опасные отходы и т.д.).
Загрязнением называют поступление в окружающую природную среду любых твердых, жидких и газообразных веществ, микроорганизмов или энергий (в виде звуков, шумов, излучений) в количествах, вредных для здоровья человека, животных, состояния растений и экосистем. По объектам загрязнения различают загрязнение поверхностных и подземных вод, загрязнение атмосферного воздуха, загрязнение почв и т.д. В последние годы актуальными стали и проблемы, связанные с загрязнением околоземного космического пространства. Источники загрязнения могут быть природные (пыльные бури, вулканическая деятельность, селевые потоки и др.) и антропогенные.
Источниками антропогенного загрязнения, наиболее опасного для популяций любых организмов, в том числе и для популяции самого человека, являются промышленные предприятия (химические, металлургические, целлюлозно-бумажные, строительных материалов и др.), теплоэнергетика, транспорт, сельскохозяйственное производство и другие технологии. Выделяют следующие виды загрязнения: химические, физические и биологические.
Под видами загрязнений понимают также любые нежелательные для экосистем антропогенные изменения:
- ингредиентное (минеральное и органическое) загрязнение как совокупность веществ, чуждых естественным биогеоценозам (например, бытовые стоки, ядохимикаты, продукты сгорания и т.д.);
- параметрическое загрязнение – изменения качественных параметров окружающей среды (тепловое, шумовое, радиационное, электромагнитное);
- биоценотическое загрязнение вызывает нарушение состава и структуры популяций (перепромысел, намеренная интродукция и акклиматизация видов и т.д.);
- стациалъно-деструкционное загрязнение (стация – место обитания популяции, деструкция – разрушение), связанное с нарушением и преобразованием ландшафтов и экосистем в процессе природопользования (зарегулирование водотоков, урбанизация, вырубка лесных насаждений и проч.)
Количество загрязнителей, т.е. веществ, ухудшающих качество окружающей среды, в мире огромно, и число их постоянно растет по мере развития новых технологических процессов. По мнению ученых, как в локальном, так и в глобальном масштабах «приоритетны» следующие загрязнители:
диоксид серы, образующий серную кислоту и сульфаты, попадающие на растительность, почву и в водоемы;
некоторые канцерогенные вещества, в частности, бензпирен;
нефть и нефтепродукты в морях и океанах;
хлорорганические пестициды (в сельских районах);
оксид углерода и оксиды азота (в городах).
К наиболее опасным загрязнителям относят также диоксины и фураны, радиоактивные вещества и тяжелые металлы.
Диоксины и фураны принадлежат к группе высокотоксичных экотоксикаторов – полихлорированных дибензодиоксинов и дибензофуранов. Даже в весьма незначительных дозах (106 мкг/кг) диоксины и фураны губительно действуют на человеческий организм, вызывая канцерогенные, иммунные, эмбриотоксичные и другие заболевания.
Радионуклиды (радиоактивные вещества) в количествах, превышающих естественный уровень их содержания в окружающей среде, вызывают весьма опасное для человека и природных экосистем радиоактивное загрязнение. Среди радиоактивных элементов наиболее токсичны для человечества и всей экосферы стронций-90, цезий-137, йод-131, углерод-14 и др. Главную радиационную опасность сегодня представляют радиоактивные осадки, которые образовались от более чем 400 ядерных взрывов, произошедших в мире с 1945 по 1996 гг., аварий и утечек в ядерно-топливном цикле, а также запасы ядерного оружия и радиоактивные отходы.
С каждым годом все большую угрозу для человека и природных биотических сообществ представляет загрязнение среды тяжелыми металлами, т.е. металлами с большим атомным весом. Особенно опасны ртуть, свинец, кадмий, мышьяк и некоторые другие, которые способны накапливаться в трофических цепях и оказывать высокотоксичное действие на организм.

2. Антропогенное загрязнение атмосферы

Всем известно, что человек может находиться без воздуха всего лишь около 5 минут, при этом воздух должен иметь определенную чистоту, и любое отклонение от нормы опасно для здоровья.
Жизнь на Земле всегда сопровождалась природным загрязнением атмосферы, которое связано с различными испарениями, вулканизмом, дегазацией глубинных расплавов и растворов.
Антропогенное загрязнение атмосферы обусловлено сжиганием всех видов природного топлива, деятельностью металлургических, химических предприятий.
К примеру, в настоящее время в атмосферу Земли выбрасывается примерно 20 млрд. тонн углекислого газа, 150 млн. тонн окиси серы (36 млн. тонн за счет природных источников), до 53 млн. тонн окиси азота (30 млн. тон природное поступление), миллионы тонн фтористых соединений, ртути, фреонов и других токсичных и вредных веществ.
Основными антропогенными загрязнителями атмосферы являются углекислый и угарный газы, различные углеводороды, окись серы, окись азота, тяжелые металлы (свинец, цинк, медь, хром, ртуть и др.), различные аэрозоли, фотохимические окислители, озон, метан (от сельскохозяйственной деятельности) и др.
Физиологическое воздействие на человеческий организм главных загрязнителей (поллютантов) чревато самыми серьезными последствиями. Так, диоксид серы, соединяясь с влагой, образует серную кислоту, которая разрушает легочную ткань человека и животных.
Пыль, содержащая диоксид кремния (Si02), вызывает тяжелое заболевание легких – силикоз. Оксиды азота раздражают, а в тяжелых случаях и разъедаю т слизистые оболочки глаз и легких, участвуют в образовании ядовитых туманов. Если они содержатся в загрязненном воздухе совместно с диоксидом серы, то возникает эффект синергизма, т.е. усиление токсичности всей газообразной смеси.
Широко известно действие на человеческий организм оксида углерода (угарного газа): при остром отравлении возможен летальный исход. Соединения углекислого и угарного газов с гемоглобином крови образуют карбоксигемоглобин, который распадается в 300 раз медленнее оксигемоглобина (соединение кислорода с гемоглобином), в результате гемоглобин крови теряет способность присоединять кислород, что ведет к нарушению процесса дыхания и тяжелому состоянию организма человека: угару и параличу дыхания, т.е. к летальному исходу. Благодаря низкой концентрации СО в атмосферном воздухе он не вызывает массовых отравлений, хотя и опасен для страдающих сердечно-сосудистыми заболеваниями.

3. Антропогенное загрязнение воды

Существование биосферы и человека всегда было основано на использовании воды. Человечество постоянно стремилось к увеличению водопотребления, оказывая на гидросферу огромное и многообразное давление. Существует две категории использования воды – водопользователи и водопотребители. Водопользователи используют воду для своей деятельности (транспорт, рыбное хозяйство). Водопотребители используют воду в целях производственных, технологических и жизнеобеспечения. В настоящее время потребность населения Земли в воде составляет 18700 км3, из них 38% расходуется на ирригацию, 9% на промышленность, 3% на бытовые нужды, 48% на разбавление сточных вод и 2% на другие потребности.
На нынешнем этапе развития техносферы, когда в мире еще в большей степени возрастает воздействие человека на гидросферу, это выражается в химическом и бактериальном загрязнении вод.
Все загрязняющие воду вещества делятся на группы:
органические вещества сельского хозяйства, бытовых и промышленных стоков (их окисление происходит под воздействием кислорода);
болезнетворные микроорганизмы и вирусы в плохо обработанных стоках городов и животноводческих ферм;
азот и фосфор из бытовых и сельскохозяйственных стоков, что увеличивает содержание нитратов и нитритов в водоемах;
тяжелые металлы, нефтепродукты, пестициды, моющие вещества, фенолы.
В результате спецзахоронений в морские воды поступают радиоактивные и химические вещества. Так, в период с 1945 по 1948 гг. на территории Германии было обнаружено почти 300 тыс. тонн химических боеприпасов. Американцы в своем секторе нашли 93 995 тонн, англичане – 122 508, французы – 9 100, в советской зоне – 70 500. По решению тройственной комиссии стран-победительниц больше половины всех отравляющих веществ было затоплено в водах Балтийского моря, которые там покоятся до сих пор.
Нефтяные загрязнения происходят за счет сбросов в океанические воды нефтепродуктов – до 6 млн. т/г., являющихся аварийными при транспортировке и добыче нефти в морях. Нефть поступает в морские воды с речными стоками. В результате 2–4 % поверхности Тихого и Атлантического океанов покрыты нефтяной пленкой.
Дампинг – сброс отходов в морские воды. Ежегодно вывозятся на судах и сбрасываются в океанические воды до 6 млрд. тонн различных промышленных отходов: отстой сточных вод, строительный мусор, старая взрывчатка, жидкие радиоактивные и химические отходы.
C коммунальными и промышленными отходами (стоками) в воды морей выбрасываются бактериально зараженные воды, что ведет к биологическому загрязнению прибрежных вод; с промышленными стоками выбрасываются тяжелые металлы, мышьяк, ртуть и др.
Раскисление прибрежных акваторий происходит в результате выпадения «кислых» дождей, что вызывает подкисление прибрежных вод и, как следствие, ведет к невозможности размножения морских животных, рыбы. Все это уменьшает количество морепродуктов, которые в этих районах являются основным продуктом питания для населения.
Острой проблемой современности является нехватка пресной воды. Запас доступных пресных вод мира, сосредоточенных в реках, озерах, подземных водах на глубине до 1 км, составляет примерно 3 млн. км3. Таких запасов сейчас и в будущем хватило бы на нужды 20–25 млрд. человек, но вода распределена на Земле неравномерно и уже сейчас люди испытывают дефицит воды. Так, в странах «третьего мира» ежегодно умирает от потребления грязной воды примерно 9 млн. человек. Примерно 1 млрд. человек не имеет необходимого количества воды, и в мире нет механизма ее распределения.
Загрязнение вод происходит в результате дампинга, загрязнений (нефтяными и речными стоками), спецзахоронений, сброса коммунальных и сточных вод, раскисления прибрежных акваторий кислыми дождями.
Для здоровья человека неблагоприятные последствия при использовании загрязненной воды проявляются либо непосредственно при питье, либо в результате биологического накопления по длинным пищевым цепям типа: вода – планктон – рыбы – человек или вода – почва – растения – животные – человек и т.д. В современных условиях увеличивается опасность таких эпидемических заболеваний, как холера, брюшной тиф, дизентерия и др., вызванных бактериальным загрязнением воды.

4. Антропогенное загрязнение почвы

Верхняя часть литосферы, которая непосредственно выступает как минеральная основа биосферы, подвергается все более возрастающему антропогенному воздействию. Человек, по гениальному предвидению В.И. Вернадского, стал «крупнейшей геологической силой», под действием которой меняется лик Земли.
Уже сегодня воздействие человека на литосферу приближается к предельно возможному. На начало 90-х гг. извлечено 125 млрд. тонн угля, 32 млрд. тонн нефти, более 100 млрд. тонн других полезных ископаемых. Распахано земель более 1500 млн. га, заболочено и засолено 20 млн. га. Эрозией за 100 лет уничтожено 2 млн. га, площадь оврагов более 25 млн. га.
Почва – природное образование, состоящее из генетически связанных горизонтов, формирующихся в результате преобразования поверхностных слоев литосферы под воздействием воды, воздуха и живых организмов. Почва – это образование, которое обеспечивает население всего мира продуктами питания.
Поверхностные слои почв легко загрязняются. Большие концентрации в почве различных химических соединений – токсикантов – пагубно влияют на жизнедеятельность почвенных организмов и чреваты тяжелыми последствиями для человека, растительного и животного мира. Например, в сильно загрязненных почвах возбудители тифа и паратифа могут сохраняться до полутора лет, тогда как в незагрязненных – лишь в течение двух-трех суток.
Нитраты – соли азотной кислоты, а нитриты – соли азотистой кислоты. Нитриты легко окисляются в соответствующие нитраты. Концентрация нитритов в окружающей среде довольно низка, а нитратов – высока. Среди нитратов наиболее известны нитраты аммония, натрия, калия, кальция, обычно называемые селитрами. Все селитры широко используются в качестве удобрений. В результате в природе образуются канцерогенные нитрозоосоединения, которые приводят к онкологическим заболеваниям, мутагенным явлениям.
Основные загрязнители почвы:
1) пестициды (ядохимикаты);
2) минеральные удобрения;
3) отходы и отбросы производства;
4) газодымовые выбросы загрязняющих веществ в атмосферу;
5) нефть и нефтепродукты.
Рост народонаселения в ХX в. потребовал увеличения производства продуктов питания, что вызвало сдвиги в сельском хозяйстве: произошла «зеленая революция». Все объясняется тем, что достигнут предел биологической продуктивности почвы и дальнейшее повышение урожайности возможно применением большого количества минеральных удобрений. Сейчас в почвах мира хранится примерно 50 млн. тонн минеральных удобрений и порядка 3 млн. тонн различных ядохимикатов, которые смываются поверхностными водами, разносятся ветром и в результате создают геохимические аномалии. В результате наблюдаются такие экологические нарушения, как накопление нитратов в пищевых продуктах, кормах для животных, разрушение трофических цепей и т.д.

5. Радиационное загрязнение среды

К числу особых видов антропогенного воздействия на биосферу, способных оказать влияние на здоровье человека, относятся:
загрязнение среды опасными отходами;
шумовое воздействие;
биологическое воздействие;
воздействие электромагнитных полей и излучений.
И некоторые другие виды воздействий.
Одной из наиболее острых экологических проблем является загрязнение окружающей природной среды отходами производства и потребления и, в первую очередь, опасными отходами. Отходы являются источником загрязнения атмосферного воздуха, подземных и поверхностных вод, почв и растительности. Они подразделяются на бытовые и промышленные (производственные) и могут находиться в твердом, жидком и, реже, в газообразном состоянии.
Под опасными отходами понимают отходы, содержащие в своем составе вещества, которые обладают одним из опасных свойств (токсичность, взрывчатость, инфекционность, пожароопасность и т.д.) и присутствуют в количестве, опасном для здоровья людей и окружающей природной среды.
В России к опасным отходам относят около 10 % от всей массы твердых отходов.
Наибольшую угрозу для человека и всей биоты представляют опасные отходы, содержащие радиоактивные изотопы, диоксины, пестициды, бензапирен и некоторые другие вещества.
Радиоактивные отходы – продукты ядерной энергетики, военных производств, других отраслей промышленности и систем здравоохранения, содержащие радиоактивные изотопы в концентрации, превышающей утвержденные нормы.
Радиоактивные элементы, например, стронций-90, вызывают стойкие нарушения жизненных функций, вплоть до гибели клеток и всего организма, Некоторые из радионуклидов могут сохранять смертоносную токсичность в течение 10–100 млн. лет.
Диоксинсодержащие отходы образуются при сжигании промышленного и городского мусора, бензина со свинцовыми присадками, как побочные продукты в химической, целлюлозно-бумажной и электротехнической промышленности, при обезвреживании воды хлорированием, при производстве пестицидов.

6. Шумовое загрязнение среды

Шумовое воздействие – одна из форм вредного физического воздействия на окружающую природную среду. Загрязнение среды шумом возникает в результате недопустимого превышения естественного уровня звуковых колебаний. В современных условиях, в урбанизированных зонах развитых стран мира, шум приводит к серьезным физиологическим последствиям для человека.
В зависимости от слухового восприятия человека упругие колебания в диапазоне частот от 16 до 20 000 Гц называют звуком, менее 16 Гц – инфразвуком, от 20 000 до 1*109 – ультразвуком и свыше 1*109 – гиперзвуком. Человек способен воспринять звуковые частоты лишь в диапазоне 16–20 000 Гц. Единица измерения громкости (силы) звука, равная 0,1 логарифма отношения данной силы звука к пороговой (воспринимаемой ухом человека) его интенсивности, называется децибелом (дБ). Диапазон слышимых звуков для человека составляет от 0 до 170 дБ.
Звуковой дискомфорт, как правило, создают не природные звуки, а антропогенные источники шума, которые повышают утомляемость человека, снижают его умственные возможности и производительность труда, вызывают нервные перегрузки, шумовые стрессы и т.д. Высокие уровни шума (>60 дБ) вызывают жалобы, при 90 дБ органы слуха начинают деградировать, 110–120 дБ считаются болевым порогом, а уровень шума свыше 130 дБ – разрушительный для органа слуха предел. При силе шума в 180 дБ в металле замечены трещины.
Основные источники антропогенного шума – транспорт (автомобильный, рельсовый и воздушный), промышленные предприятия и бытовое оборудов ание. Наибольшее воздействие на окружающую среду от автотранспорта – 80% от общего шума. В Москве, Санкт-Петербурге и в других крупных городах уровень шума от транспорта днем достигает 90–100 дБ и даже ночью в некоторых районах не опускается ниже 70 дБ, при предельно допустимом уровне шума для ночного времени – 40 дБ.
Официальные данные свидетельствуют, что в России примерно 35 млн. человек (или 30% городского населения) подвержены воздействию транспортного шума, превышающего нормативы. От авиационного шума страдают несколько миллионов человек: авиационный шум с максимальным уровнем 75 дБ фиксируется на расстоянии более 10 км от аэропорта. Шумовое воздействие – одна из наиболее острых экологических проблем современности: более половины населения Западной Европы проживает в районах с уровнем шума 55–70 дБ.
Человек может субъективно не замечать звуки, но от этого разрушительное действие его на органы слуха не только не уменьшается, но и усугубляется. Неблагоприятно влияют на внутренние органы и психическую сферу человека, и звуковые колебания с частотой менее 16 Гц. Инфразвуки вызывают у людей состояние, аналогичное морской болезни, особенно при частоте менее 12 Гц.

7. Биологическое загрязнение среды

8. Методы борьбы с антропогенным воздействием на окружающую среду

Различие между неблагоприятным и природными и антропогенными факторами с практической точки зрения состоит в возможности влияния на сами источники (причины) таких факторов. Природные факторы обычно действуют независимо от желаний людей, и исключить их возникновение, как правило, не удается. Тем не менее, вполне реально предотвращать вредные последствия их локального действия. Например, невозможно предотвратить само появление паводковых вод, но вполне возможно, возведя дамбу, исключить затопление конкретной территории. Невозможно изменить засушливый климат, но можно, соорудив оросительную систему, создать благоприятные условия для земледелия в данной местности и т.д. Следует лишь отметить, что такие мероприятия требуют продуманности и научно обоснованного прогноза будущих изменений экологической обстановки. В противном случае построенное природоохранное сооружение может породить совсем не те последствия, которые ожидали авторы проекта и принести больше вреда, чем пользы. Антропогенные факторы, напротив, можно не только "обезвреживать", но и почти полностью исключать. Например, загрязнение водоема сточными водами промышленного предприятия можно предотвращать не только путем строительства очистных сооружений, но и путем устранения самих стоков, например перевода предприятия на замкнутую систему технического водоснабжения, при которой сброса сточных вод практически не будет совсем.
Большие перспективы открывает организация промышленности, когда отходы одного предприятия становятся сырьем для другого.
На общегосударственном (макроэкономическом) уровне большое влияние на экологическую обстановку оказывает сама структура экономики. Чем больше В стране или регионе превалируют обрабатывающие отрасли, чем глубже переработка сырья, тем меньше потребляется природных ресурсов, меньше отходов и соответственно меньше наносится вреда окружающей среде. В зависимости от характера проводимых мероприятий борьба с антропогенными факторами разделается натри части (направления), показанными на рисунке.

Прямые природоохранные мероприятия включают традиционные способы борьбы с отходами (возведение очистных сооружений, фильтров, организация свалок и т.д.)- Они представляют наименее эффективное направление в силу того, что они являются борьбой не с причинами, а со следствиями загрязнений окружающей среды. Практика показывает, что очистные сооружения далеко не всегда справляются с возлагаемыми на них задачами (особенно в условиях роста промышленного производства). Они требуют систематической реконструкции, ремонтов, на что часто не хватает денег. Тем не менее, это направление не утратило своего значения в силу простоты и проработанности применяемых решений.

    Введение

    Понятие и основные виды антропогенных воздействий

    Общее понятие экологического кризиса

    История антропогенных экологических кризисов

    Пути выхода из глобального экологического кризиса

    Заключение

    Используемая литература и источники

Введение

С появлением и развитием человечества процесс эволюции заметно видоизменился. На ранних стадиях цивилизации вырубка и выжигание лесов для земледелия, выпас скота, промысел и охота на диких животных, войны опустошали целые регионы, приводили к разрушению растительных сообществ, истреблению отдельных видов животных. По мере развития цивилизации, особенно после промышленной революции конца средних веков, человечество овладевало все большей мощью, все большей способностью вовлекать и использовать для удовлетворения своих растущих потребностей огромные массы вещества – как органического, живого, так и минерального, костного.

Настоящие сдвиги в биосферных процессах начались в XX веке в результате очередной промышленной революции. Бурное развитие энергетики, машиностроения, химии, транспорта привело к тому, что человеческая деятельность стала сравнима по масштабам с естественными энергетическими и материальными процессами, происходящими в биосфере. Интенсивность потребления человечеством энергии и материальных ресурсов растет пропорционально численности населения и даже опережает его прирост. Последствия антропогенной (предпринимаемой человеком) деятельности проявляется в истощении природных ресурсов, загрязнения биосферы отходами производства, разрушении природных экосистем, изменении структуры поверхности Земли, изменении климата. Антропогенные воздействия приводят к нарушению практически всех природных биогеохимических циклов.

В соответствии с плотностью населения меняется и степень воздействия человека на окружающую среду. При современном уровне развития производительных сил деятельность человеческого общества сказывается на биосфере в целом.

Понятие и основные виды антропогенного воздействия

Антропогенный период, т.е. период, в котором возник человек, является революционным в истории Земли. Человечество проявляет себя как величайшая геологическая сила по масштабам своей деятельности на нашей планете. А если вспомнить о непродолжительности времени существования человека по сравнению с жизнью планеты, то значение его деятельности предстанет еще яснее.

Под антропогенными воздействиями понимают деятельность, связанную с реализацией экономических, военных, рекреационных, культурных и других интересов человека, вносящую физические, химические, биологические и другие изменения в природную среду. По своей природе, глубине и площади распространения, времени действия и характеру приложения они могут быть различными: целенаправленными и стихийными, прямыми и косвенными, длительными и кратковременными, точечными и площадными и т. д.

Антропогенные воздействия на биосферу по их экологическим последствиям разделяют на положительные и отрицательные (негативные). К положительным воздействиям можно отнести воспроизводство природных ресурсов, восстановление запасов подземных вод, полезащитное лесоразведение, рекультивацию земель на месте разработок полезных ископаемых и др.

К отрицательным (негативным) воздействиям на биосферу относят все виды воздействий, создаваемых человеком и угнетающих природу. Небывалые по мощности и разнообразию негативные антропогенные воздействия особенно резко стали проявляться во второй половине XX в. Под их влиянием естественная биота экосистем перестала служить гарантом устойчивости биосферы, как это наблюдалось ранее в течение миллиардов лет.

Отрицательное (негативное) воздействие проявляется в самых разнообразных и масштабных акциях: исчерпании природных ресурсов, вырубке леса на больших площадях, засолении и опустынивании земель, сокращении численности и видов животных и растений и т.д.

К числу основных глобальных факторов дестабилизации природной среды относятся:

Рост потребления природных ресурсов при их сокращении;

Рост населения планеты при сокращении пригодных для обитания

территорий;

Деградация основных компонентов биосферы, снижение способности

природы к самоподдержанию;

Возможные изменения климата и истощение озонового слоя Земли;

Сокращение биологического разнообразия;

Возрастание экологического ущерба от стихийных бедствий и

техногенных катастроф;

Недостаточный уровень координации действий мирового сообщества

в области решения экологических проблем.

Главнейшим и наиболее распространенным видом отрицательного воздействия человека на биосферу является загрязнение. Большинство острейших экологических ситуаций в мире, так или иначе, связаны с загрязнением окружающей природной среды.

Антропогенные воздействия можно разделить на разрушительные, стабилизирующие и конструктивные.

Разрушительное (деструктивное) - приводит к утрате, часто невосполнимой, богатств и качеств природной среды. Это охота, вырубка и выжигание лесов человеком – Сахара вместо леса.

Стабилизирующее - это воздействие целенаправленное. Ему предшествует осознание экологической угрозы конкретному ландшафту - полю, лесу, пляжу, зеленому наряду городов. Действия направляются на замедление деструкции (разрушения). Например, вытаптывание пригородных лесопарков, уничтожение подроста цветущих растений можно ослабить, разбивая дорожки, образуя места для короткого отдыха. В сельскохозяйственных зонах проводят почвозащитные мероприятия. На городских улицах высаживают и высеивают растения, устойчивые к действию транспортных и промышленных выбросов.

Конструктивное (например, рекультивация) – действие целенаправленное, его результатом должно стать восстановление нарушенного ландшафта, например лесовосстановительные работы либо воссоздание искусственного ландшафта на месте безвозвратно утраченного. Примером может служить очень трудная, но необходимая работа по восстановлению редких видов животных и растений, по облагораживанию зоны горных выработок, свалок, превращению карьеров и терриконов в зеленые зоны.

Известный эколог Б.Коммонер (1974) выделил пять, по его

мнению, основных видов вмешательства человека в экологические процессы:

Упрощение экосистемы и разрыв биологических циклов;

Концентрация рассеяной энергии в виде теплового загрязнения;

Рост ядовитых отходов от химических производств;

Введение в экосистему новых видов;

Появление генетических изменений в организмах растений и

животных.

Подавляющая часть антропогенных воздействий носит

целенаправленный характер, т.е. осуществляется человеком сознательно во имя достжения конкретных целей. Существуют и антропогенные воздействия стихийные, непроизвольные, имеющие характер после действия. Например, к этой категор воздействий относятся процессы подтопления территории, возникающие после ее застройки, и др.

Главнейшим и наиболее распространенным видом отрицательного

воздействия человека на биосферу является загрязнение. Загрязнение называют поступление в окружающую природную среду любых твердых, жидких и газообразных веществ, микроорганизмов или энергий (в виде звуков, шумов, излучений) в количествах, вредных для здоровья человека, животных, состояния растений и экосистем.

По объектам загрязнения различают загрязнение поверхностных подземных вод, загрязнение атмосферного воздуха, загрязнение почв и т.д. В последние годы актуальными стали и проблемы, связанные с загрязнением околоземного космического пространства. Источниками антропогенного загрязнения, наиболее опасно для популяций любых организмов, являются промышленные предприятия (химические, металлургические, целлюлозно-бумажные, строительных материалов и др.) теплоэнергетика, транснорм, сельскохозяйственное производство и др. технологии.

Технические возможности человека изменять природную среду стремительно возрастали, достигнув своей высшей точки в эпоху научно-технической революции. Ныне он способен осуществить такие проекты преобразования природной среды, о которых еще сравнительно недавно не смел и мечтать.

Общее понятие экологического кризиса

Экологический кризис - особый тип экологической ситуации, когда среда обитания одного из видов или популяции изменяется так, что ставит под сомнение его дальнейшее выживание. Основные причины кризиса:

Биотические: качество окружающей среды деградирует по сравнению с потребностями вида после изменения абиотических экологических факторов (например, увеличение температуры или уменьшение количества дождей).

Биотические: окружающая среда становится сложной для выживания вида (или популяции) из-за увеличенного давления со стороны хищников или из-за перенаселения.

Под экологическим кризисом в настоящее время понимают критическое состояние окружающей среды, вызванное деятельностью человечества и характеризующееся несоответствием развития производительных сил и производственных – отношений в человеческом обществе ресурсно-экологическим возможностям биосферы.

Понятие глобального экологического кризиса сформировалось в 60 – 70 годы ХХ века.

Революционные изменения в биосферных процессах, которые начались в XX веке, привели к бурному развитию энергетики, машиностроения, химии, транспорта, к тому, что человеческая деятельность стала сравнима по масштабам с естественными энергетическими и материальными процессами, происходящими в биосфере. Интенсивность потребления человечеством энергии и материальных ресурсов растет пропорционально численности населения и даже опережает его прирост.

Кризис может быть глобальным и локальным.

Становление и развитие человеческого общества сопровождались локальными и региональными экологическими кризисами антропогенного происхождения. Можно сказать, что шаги человечества вперед по пути научно-технического прогресса неотступно, как тень, сопровождали негативные моменты, резкое обострение которых приводило к экологическим кризисам.

Но ранее имели место локальные и региональные кризисы, поскольку само воздействие человека на природу носило преимущественно локальный и региональный характер, и никогда не было столь значительным, как в современную эпоху.

Бороться с глобальным экологическим кризисом гораздо труднее, чем с локальным. Решение этой проблемы можно достигнуть только минимизацией загрязнений, произведенных человечеством, до уровня, с которым экосистемы будут в состоянии справиться самостоятельно.

В настоящее время глобальный экологический кризис включает четыре основных компонента: кислотные дожди, парниковый эффект, загрязнение планеты суперэкотоксикантами и так называемые озоновые дыры.

Сейчас уже очевидно для всех, что экологический кризис - понятие общеглобальное и общечеловеческое, касающееся каждого из населяющих Землю людей.

Последовательное решение насущных экологических проблем должно привести к снижению негативного воздействия общества на отдельные экосистемы и природу в целом, включая человека.

История антропогенных экологических кризисов

Свидетелями первых великих кризисов - возможно, самых катастрофических - были только микроскопические бактерии, единственные обитатели океанов в первые два миллиарда лет существования нашей планеты. Одни микробные биоты погибали, другие - более совершенные - развивались из их остатков. Около 650 миллионов лет назад в океане впервые зародился комплекс крупных многоклеточных организмов - Эдиакарская фауна. Это были странные мягкотелые существа, непохожие ни на кого из современных обитателей моря. 570 миллионов лет назад, на рубеже протерозойской и палеозойской эр, эта фауна была сметена очередным великим кризисом.

Вскоре сформировалась новая фауна - кембрийская, в которой впервые основную роль стали играть животные с твердым минеральным скелетом. Появились первые рифостроящие животные - загадочные археоциаты. После короткого расцвета археоциаты бесследно исчезли. Только в следующем, ордовикском периоде начали появляться новые рифостроители - первые настоящие кораллы и мшанки.

Еще один великий кризис наступил в конце ордовика; затем еще два подряд - в позднем девоне. Каждый раз при этом вымирали самые характерные, массовые, господствующие представители подводного мира, в том числе рифостроители.

Крупнейшая катастрофа произошла в конце пермского периода, на рубеже палеозойской и мезозойской эр. На суше тогда произошли сравнительно небольшие перемены, но в океане погибло почти все живое.

Всю следующую - раннетриасовую - эпоху моря оставались практически безжизненными. В раннетриасовых отложениях до сих пор не обнаружено ни одного коралла, а такие важные группы морских обитателей, как морские ежи, мшанки и морские лилии представлены мелкими единичными находками.

Только в середине триасового периода подводный мир начал понемногу восстанавливаться.

Экологические кризисы случались как до появления человечества, так и во время его существования.

Первобытные люди жили племенами, занимались собирательством плодов, ягод, орехов, семян и другой растительной пищи. С изобретением орудий труда и оружия они стали охотниками и начали употреблять мясную пищу. Можно считать, что это был первый в истории планеты экологический кризис, поскольку началось антропогенное воздействие на природу - вмешательство человека в естественные трофические цепи. Иногда его называют кризисом консументов. Однако биосфера выдержала: людей было еще мало, а освободившиеся экологические ниши заняли другие виды.

Следующим шагом антропогенного воздействия было одомашнивание некоторых видов животных и выделение пастушеских племен. Это было первое историческое разделение труда, которое давало людям возможность более стабильно, по сравнению с охотой, обеспечивать себя пищей. Но одновременно преодоление этой ступени эволюции человека было и следующим экологическим кризисом, поскольку одомашненные животные вырывались из трофических цепей, их специально охраняли, чтобы они давали больший, чем в естественных условиях, приплод.

Около 15 тыс. лет назад возникло земледелие, люди перешли к оседлому образу жизни, появились собственность и государство. Очень быстро люди сообразили, что наиболее удобным способом очистки земель от леса для распашки было выжигание деревьев и прочей растительности. К тому же зола является хорошим удобрением. Начался интенсивный процесс обезлесения планеты, который продолжается и поныне. Это был уже более крупный экологический кризис - кризис продуцентов. Стабильность обеспечения людей пищей возросла, что позволило человеку преодолеть действие ряда лимитирующих факторов и выиграть в конкурентной борьбе с другими видами.

Примерно в III веке до н.э. в древнем Риме возникло поливное земледелие, изменившее гидробаланс естественных водных источников. Это был очередной экологический кризис. Но биосфера снова выстояла: людей на Земле все же было сравнительно мало, а площадь поверхности суши и число пресноводных источников было еще довольно велико.

В ХVII в. началась промышленная революция, появились машины и механизмы, которые облегчили физический труд человека, однако это привело к быстро возрастающему загрязнению биосферы отходами производства. Однако биосфера все еще имела достаточный потенциал (его называют ассимиляционным), чтобы противостоять антропогенным воздействиям.

Но вот пришел ХХ век, символом которого стала НТР (научно-техническая революция); вместе с этой революцией ушедший век принес и небывалый ранее глобальный экологический кризис.

Экологический кризис ХХ в. характеризует колоссальный масштаб антропогенного воздействия на природу, при котором ассимиляционного потенциала биосферы уже не хватает для его преодоления. Нынешние экологические проблемы имеют не национальное, а планетарное значение.

Во второй половине ХХ в. человечество, которое до сих пор воспринимало природу только как источник ресурсов для своей хозяйственной деятельности, постепенно начало осознавать, что дальше так продолжаться не может и надо что-то предпринимать для сохранения биосферы.

Пути выхода из глобального экологического кризиса

Анализ экологического и социально-экономической обстановки позволяет выделить 5 основных направлений выхода из глобального экологического кризиса.

Экология технологий;

Развитие и совершенствование экономики механизма

охраны окружающей среды;

Административно-правовое направление;

Эколого-просветительное;

Международно-правовое;

Все компоненты биосферы охранять надо не по отдельности, а в целом как единую природную систему. Согласно Федерального закона об «охране окружающей среды» (2002г.) основными принципами охраны окружающей среды является:

Соблюдение прав человека на благоприятную окружающую среду;

Рациональное и не расточительное природопользование;

Сохранение биологического разнообразия;

Платность природопользования и возмещение вреда окружающей среде;

Обязательное проведение государственной экологической экспертизы;

Приоритет сохранения естественных экосистем природных ландшафтов и комплексов;

Соблюдение прав каждого на достоверную информацию о состоянии окружающей среды;

Важнейшим природоохранным принципом является научно – обоснованное сочетание экономических, экологических и социальных интересов (1992г.)

Заключение

В заключении можно отметить, что в процессе исторического развития человечества менялось, его отношение к природе. По мере развития производительных сил шло все большее наступление на природу, ее покорение. По своему характеру такое отношение можно назвать практически-утилитарным, потребительским. Это отношение в современных условиях проявляется в наибольшей степени. Поэтому дальнейшее развитие и социального прогресса настоятельно требует гармонизации отношений общества и природы за счет уменьшения потребительского и возрастания рационального, усиления этического, эстетического, гуманистического к ней отношения. А это возможно благодаря тому, что, выделившись из природы, человек начинает к ней относиться также и этически, и эстетически, т.е. любит природу, наслаждается и восхищается красотой и гармонией природных явлений.

Поэтому воспитание чувства природы, является важнейшей задачей не только философии, но и педагогики, решать которую следует уже с начальной школы, ведь приобретенные в детстве приоритеты в будущем проявят себя в качестве норм поведения и деятельности. А значит, появляется больше уверенности в том, что человечество сможет достичь гармонии с природой.

И нельзя не согласиться со словами, что все в этом мире взаимосвязано, ничто не исчезает и ничто не появляется ниоткуда.

Используемая литература и источники

    А.А. Мухутдинов, Н.И. Борознов. "Основы и менеджмент промышл. экологии" “Магариф”, Казань,1998

    Бродский А.К. Краткий курс общей экологии. С.-Пб., 2000

    интернет – сайт: mylearn.ru

    интернет – сайт: www.ecology-portal.ru

    www.komtek-eco.ru

    Реймерс Н.Ф. Надежды на выживание человечества. Концептуальная экология. М., Экология, 1994

воздействия на окружающую среду и их последствия проанализированы на примере опытного участка...
  • Развитие продуктивных сил и антропогенное влияние на окружающую среду

    Реферат >> Экология

    2 Развитие производительных сил и антропогенное воздействие на окружающую среду В конце ХХ ст. сохранение среды обитания людей стало...

  • Объективная оценка последствий антропогенной деятельности возможна лишь при рассмотрении природной среды как сложной системы , развивающейся по свои законам, которые должны учитывать человеком в его деятельности.

    Системный взгляд на природную среду отражается в понятии биосфера (которым обозначается область существования жизни на Земле).

    По определению В.И. Вернадского биосфера включает в себя компоненты неживой природы:

    · Литосферу (верхний слой земной коры)

    · Атмосферу (ее нижний слой)

    · Гидросферу (водную оболочку)

    А так же важнейший элемент – совокупность живых организмов («живое вещество» - по Вернадскому) – мощный фактор воздействия на неживую природу и ее преобразования

    Биосфера – динамическая система , в которой происходит непрерывное перемещение вещества. В то же время она обладает определенной устойчивостью - способна к саморегулированию и сохранению своей структуры при изменении внешних условий.

    Для биосферы характерным является не просто поступательное перемещение вещества, а круговорот веществ , т.е. циклический процесс обмена веществом между различными компонентами биосферы в результате совокупности химических и биохимических превращений.

    Круговорот совершают все химические элементы. Эти процессы не изолированы друг от друга, частично перекрываются и согласованы (сбалансированы) меду собой. Существование множества согласованных циклических процессов обмена химическими элементами между различными компонентами биосферы и обуславливает ее устойчивость к воздействиям внешних возбуждающих факторов, е числу которых относится и человеческая деятельность.

    Можно выделить 2 основных аспекта (вида) антропогенного воздействия на окружающую среду, сопровождающаяся негативными последствиями.

    1. Поступление в окружающую среду химических веществ, чуждых природе, несвойственных живым организмам (является результатом органического синтеза - ксенобиотиков).

    Последствия поступления в ОС синтезированных человеком веществ может быть разнообразным. Ряд веществ – ксенобиотиков – несут прямую угрозу живым организмам, в первую очередь высшим, поскольку являются сильными ядами для них (пестициды, ПХБ). Другие вещества (химически не опасные для живого) в ОС так же могут привести к пагубны последствиям – прекрасная иллюстрация ФХУ, которые первоначально казались абсолютно безвредными для ОС, но в конечном итоге привели к такой ситуации (нарушение озонового слоя), что жизнь на Земле в определенной мере оказалась под угрозой. Отсюда задача науки ХОС – оценка поведения этих веществ в ОС, влияние их на природные процессы.

    2. Изменения в природных круговоротах в результате добавления или удаления присутствующих в них химических веществ в ходе человеческой деятельности, что влияет на устойчивость биосферы.



    Природные круговороты претерпевают неестественные изменения. Но естественные изменения в природной среде происходят так медленно, что для всего живого сохранятся возможность приспособится генетически к этим изменениям. Человек ускоряет движение лишних веществ, так что возможно нарушение цикличности. В результате в одних местах возможен избыток, в других недостаток того или иного вещества. При антропогенном вмешательстве для такого приспособления времени и шансов мало и последствия могут быть весьма существенными.

    Хозяйственная деятельность затрагивает не один какой либо природный круговорот, а все без исключения. Отсюда следует, что одной из важных задач науки ХОС является тщательный анализ природных круговоротов отдельных химических элементов с целью выявления антропогенных нарушений в них и оценки последствий этих нарушений.

    Учитывая это, рассмотрим круговороты основных биогенных элементов (составляющих основу живых организмов) С, О, N, P, S в биосфере и попытаемся оценить изменения в этих эволюционно сложившихся круговоротах, вызванных человеком и возможные последствия этих изменений.

    КРУГОВОРОТ ВЕЩЕСТВ В ПРИРОДЕ

    ЗАКОНОМЕРНОСТИ РАСПРЕДЕЛЕНИЯ ВЕЩЕСТВ

    В ОКРУЖАЮЩЕЙ СРЕДЕ

    Круговорот углерода

    Углерод составляет основу всех жизненных процессов в организмах он же в огромных масштабах вовлекается в хозяйственную деятельность. Таким образом круговорот С – весьма удобный объект для анализ проблем, вызванных антропогенным воздействием на круговорот веществ в природе.



    Резервуарами углерода, участвующего в круговороте, являются все геосферы – атмосфера, гидросфера, литосфера. Масса углерода в этих резервуарах соотносится примерно как 1:50:1300.

    В атмосфер е практически весь углерод содержится в форме СО 2 . В гидросфере (главным образом в океанах – основном резервуаре гидросферы) углерод присутствует в преимуществен но в неорганической форме - в виде НСО 3 - - (на долю органического углерода приходится около 2% от общей массы).

    Наибольшее количество углерода в целом (и СО 2) сосредоточено в литосфере . Однако углерод литосферы медленно вовлекается в естественные биохимические процессы, таки образом биохимический цикл углерода преимущественно охватывает атмосферу и гидросферу.

    Самый важный компонент природного цикла углерода – газообразный СО 2 , таким образом рассматривая цикл углерода, естественно рассматривают прежде всего СО 2 и процессы с его участием.

    Круговорот С в биосфере (биогеохимический цикл) можно представить схемой (рис 1 раздатка):

    СО 2 , находящийся в атмосфере, является основным источником наращивания биомассы (при действии организмов - продуцентов). В процессе фотосинтеза СО 2 превращается в углеводы, которые затем в процессах биосинтеза превращаются в белки и т.п. (благодаря организмам-консументам, синтезирующим разнообразные вещества).

    Часть С в виде СО 2 в процессе дыхания живых организмов возвращается в атмосферу. При микробиологическом разложении органических веществ погибших организмов СО 2 также возвращается в цикл и он (цикл) таким образом замыкается.

    Очень важную роль в круговороте углерода играет газообмен между атмосферой и гидросферой (водами мирового океана). Растворенный в воде СО 2 частично потребляется фитопланктоном, расходуясь на фотосинтез, и затем высвобождается в результате деятельности деструкторов, т.е. включается в круговорот. Океаническая вода содержит значительные количества ионов Са 2+ и Mg 2+ . При растворении СО 2 в морской воде образуется карбонатная система, которая описывается равновесием:

    Это равновесие зависит от парциального давления СО 2 в атмосфере и от температуры. Концентрация СО 2 в поверхностных слоях воды является равновесной в его одержанием в атмосфере при заданных условиях (). При повышении концентрации СО 2 в атмосфере повышается его содержание в морской воде и происходит сдвиг равновесия в сторону образования бикарбонатов. При снижении концентрации СО 2 в атмосфере возможна дегазация вод океана, сопровождающаяся выделением СО 2 . Таки образом мировой океан играет роль своеобразного буфера, сглаживающего колебания содержания СО 2 в атмосфере.

    Биосферный цикл углерода замкнут не полностью, т.е. не весь углерод, вовлекаемый в фотосинтез, возвращается в цикл. Часть углерода выводится из биосферы в своеобразные биологические тупики:

    1. осаждается в виде карбонатов (в водной среде) из которых формируются осадочные породы;

    2. накапливаются в виде гумуса в почве и торфа, формирующихся из остатков погибших растений и животных организмов, или в виде донных отложений (органический углерод гумуса в силу особенности строения не может быть использован живыми организмами – геополимеры гумуса устойчивы к микробиологическому разложению);

    3. накапливаются в виде органического углерода ископаемых топлив, формирующихся в определенных условиях.

    Естественными процессами, обусловливающими пополнение цикла углерода углекислым газом является вулканическая деятельность, лесные пожары, дегазация мантии Земли. Наряду с ними к дополнительному внесению СО 2 в цикл является и хозяйственная деятельность. Именно это является главным фактором вмешательства хозяйственной деятельности в естественный круговорот углерода.

    Деятельность человека сопровождается интенсивным возвращением в круговорот С запасов углерода, находящихся в природных залежах. (т.е. временно выключенных из круговорота)

    · прежде всего в результате сжигания органического топлива, что приводит к поступлению в атмосферу колоссальных количеств CO 2

    · значительный аналогичный вклад вносит металлургия, производство строительных материалов (цемента: )

    · дополнительное количество СО 2 поступает в атмосферу, например при выпадении кислотных дождей в районах с карбонатными породами, при сельскохозяйственных мероприятиях по известкованию почв.

    По некоторым оценкам ежегодное поступление СО 2 в атмосферу в результате хозяйственной деятельности примерно в 100 раз превышает его поступление вследствие геологических процессов и составляет до 10% биогенного потока СО 2 в атмосферу.

    Есть ряд природных факторов, способствующих связыванию СО 2 и препятствующих накоплению СО 2 в цикле.

    · Рост биомассы

    · Образование гумуса в почвах

    · Усиление процесса выветривания минералов ведущих к образованию карбонатов

    · и главный фактор – поглощение избыточного СО 2 мировым океаном.

    Однако антропогенное давление на ОС в настоящее время таково, что баланс СО 2 нарушен, его содержание непрерывно увеличивается - прирост за последние 100 лет около 15% и темпы растут.

    В тоже время накопление СО 2 в атмосфере способно существенно повлиять на климат, т.е. масштабы и тепы использования ископаемого топлива несут серьезную угрозу глобальных изменений климата, последствия которых трудно оценить, но по общему мнению – они отрицательны для развития цивилизации.

    Круговорот кислорода. Фотосинтез.

    В процессах составляющих основу круговорота О 2 участвует кислород, присутствующий в атмосфере.

    В атмосфере содержится 1,2*10 15 тонн О 2 . Главный источник кислорода – фотосинтез, который дает около 2,5*10 11 тонн/год. Другой источник – фотодиссоциация молекул Н 2 О дает примерно 2*10 6 тонн О 2 в год, т.е. на несколько порядков меньше.

    Свободный кислород будучи окислителем участвует в геохимических процессах окисляя восстановленные формы элементов

    Окисление органических веществ(СН 4), N 2 в сумме не более 1% от общего расхода.

    Основная масса О 2 используется для обеспечения:

    1. жизнедеятельности (дыхание)

    2. микробиологической деструкции органических веществ

    3. очень небольшую долю составляет расход О 2 в производственных процессах (сжигание топлива, технологические процессы).

    Таким образом образование и потребление О 2 происходит практически в замкнутом цикле фотосинтеза и деструкции органического вещества в биосфере и цикл О 2 можно представить простой схемой (рис 2 раздатка).

    Фотохимические процессы составляют основу круговорота О 2 и его соединений (Н 2 О, СО 2). Они протекают в фотосинтезирующих организмах – растениях. Фотосинтезирующие организмы составляют около 90% биомассы всех живых организмов на Земле, общая же биомасса животных примерно 0,1% биомассы растений, таки образом вклад животных в биологический круговорот О 2 пренебрежимо мал в сравнении с вкладом автотрофных растений и микроорганизмов.

    Источником фотосинтетического О 2 являются континентальная и морская растительность. Причем почти половину его общего количества (по разны источникам от 30 до 50%) образуется за счет фитопланктона (микроскопических водорослей), содержащегося в верхних слоях вод морей и океанов, хотя биомасса фитопланктона существенно меньше биомассы континентальной растительности.

    Фотосинтез – процесс образования глюкозы из двух простых соединений Н 2 О и СО 2 , протекающий при освещении под действием катализатора, которым является хлорофилл, содержащийся в клетках листьев зеленых растений или водорослей. Суммарная химическая реакция процесса фотосинтеза выражается уравнением:

    Глюкоза служит исходным материалом для формирования растений

    По-существу, фотосинтез, - процесс преобразования энергии солнечного излучения в химическую энергию (протекающей с достаточно высокой эффективностью ~ 5 %)

    Фундаментальный процесс запасания солнечной энергии в виде химической при фотосинтезе – окисление воды до О 2

    Эта реакция – 1-ый этап фотосинтеза, требующий освещения.

    Второй процесс (темновая) стадия синтеза органического вещества – восстановление СО 2 до уровня глюкозы

    Суммарная реакция:

    Где под подразумевается 1/6 часть глюкозы.

    Фотосинтез протекает во фрагментах клетки, которые называются хлоропласты – в их структурах содержаться фотосинтетические пигменты, основным из которых является хлорофилл.

    Хлорофилл представляет собой порфириновую систему, основой которой является пиррольный цикл.

    Механизм фотосинтеза имеет сложную природу и еще до конца не ясен. В общем виде механизм выглядит следующим образом:

    При поглощении солнечного излучения (хлорофилл поглощает главным образом синий – 450 нм и красный 650 нм свет) молекулы Chl переходят в возбужденное состояние:

    Энергия возбуждения по цепи сопряжения передается в реакционный центр хлоропласта (включающий до 300 молекул пигмента). В реакционных центрах образуются катион-радикалы димера хлоропласта (Chl 2 +), лоторые окисляют воду в 4-х электронном процессе (реакция 1) (). Т.е. энергия активированных молекул хлорофилла расходуется на окисление воды до О 2 и восстановление СО 2 .

    Важную роль при это играет, как полагают, Mn, который является непосредственным окислителем.

    Формальная схема фотокаталитического окисления воды выглядит следующим образом:

    Первоначально Mn окисляется катион-радикалом димера Chl 2 + , затем Mn 4+ непосредственно окисляет воду.

    Скорость фотосинтеза (R) зависит от интенсивности света. Влияние этого фактора отражает следующая зависимость:

    В темноте скорость фотосинтеза = 0, затем по мере увеличения интенсивности R возрастает линейно и затем форм зависимости меняется и при некоторой интенсивности R достигает максимального значения (R max), величина которого зависит от соотношения парциальных давлений и в атмосфере. В ясный день интенсивность света может достигать 3,3дж/см 2 мин, что обеспечивает максимальную скорость фотосинтеза (R max). В пасмурный день освещенность может снижаться примерно в 5 раз, а скорость фотосинтеза лишь наполовину.

    Как видно из представленной зависимости, чтобы вызвать существенное изменение скорости фотосинтеза и соответственно снижение количества поступающего в атмосферу кислорода, нужно очень существенное уменьшение интенсивности света. Такой случай по естественным причинам маловероятен (разве что какая либо гипотетическая катастрофа типа падения на Землю гигантского астероида, взрыв которого в плотных слоях атмосферы) мог бы вызвать образование мощных пылевых облаков над всей территорией Земли. Аналогичные катастрофические последствия могла бы вызвать глобальная ядерная война.

    Существенную угрозу для фотосинтеза представляет розливы нефти и нефтепродуктов в мировом океане. Как отмечалось, очень важную роль в снабжении атмосферы кислородом играет фитопланктон. При разливах нефтепродуктов образуется такая углеводородная пленка на поверхности воды, препятствующая газообмену с атмосферой и естественно нарушающая процесс фотосинтеза. На баланс О 2 в атмосфере в определенной степени может влиять сельскохозяйственная деятельность, а именно распашка земель, занимаемых лесами, т.е. уменьшение площадей, занимаемой фотосинтезирующей наземной растительностью (и аналогичные по последствия действия).

    Однако в настоящее время нет непосредственных признаков нарушения цикла кислорода. Запасы кислорода достаточно велики: на 1 м 2 земной поверхности приходится около 60000 моль О 2, расход на дыхание всего 8 моль/1 м 2 поверхности в год. Если мы сожжем все известные запасы ископаемого топлива, то используем всего лишь 3% имеющегося О 2. Проблемы могут возникнуть из-за тех последствий антропогенной деятельности, которая сопровождается уничтожение лесов, разрушение почвенного покрова, гибели фитопланктона из-за загрязнения океанических вод нефтепродуктами.

    Круговорот азота

    Азот в той или иной форме присутствует во всей биосфере. Это важнейший биогенный элемент, входящий в состав биомолекул живых организмов – белков (где его доля до 16-18%), нуклеиновых кислот, хлорофилла, гемоглобина. Азот – основной компонент биосферы (его содержание ~ 79 %) В гидросфере содержание азота во всех химических формах в среднем 5*10 -5 моль/л.

    Газообразный N 2 служит основным резервом для круговорота азота. При этом в глобальном биогеохимическом цикле азота ведущая роль принадлежит массообмену между атмосферой и почвой, где азот связан с живым органическим веществом, органическим остатком или гумусом. Большинство биологических форм не усваивает молекулярный азот, для того чтобы свободный азот атмосферы мог быть использован в биологических процессах, он должен быть превращен в органические (карбамид, аминокислоты, белки) или неорганические соединения (NH 3 , аммонийные соли, нитраты), т.е. химически связан в какие то соединения. Это химическое связывание (фиксация) возможно физико-химическим способом (1) либо биологически путем (2) причем биологический способ играет главную роль в вовлечении свободного азота в круговорот.

    1) небиологическая фиксация N 2 (N N) в естественных условиях происходит:

    а) в основном при электрических разрядах в атмосфере. Электрический разряд инициирует распад молекулы N 2 на атомы (это происходит в само канале молнии где температура достигает тысячи градусов)

    и ряд последующих процессов, приводящих к образованию оксидов азота.

    технические процессы:

    б) Образование оксидов азота из азота воздуха происходит так же в технологических процессах при высоких температурах (в двигателях внутреннего сгорания, при сжигании топлива)

    в) еще один химический способ связывания азота – целенаправленный технический процесс производства NH 3 при взаимодействии N 2 и H 2, широко используемый в промышленности азотных удобрений

    2) Биологический путь фиксации молекулярного азота – химическое связывание так называемыми клубеньковыми бактериями, свободно обитающими либо симбиотически связанными с некоторыми видами растений, обитающими в корнях некоторых наземных растений семейства бобовых (клевер, горох, люцерна и т.д.), а в гидросфере – сине-зелеными водорослями (известно что растения семейства бобовых значительно обогащают почву легкоусваиваимыми соединениями азота – клевер например дает до 150 кг связанного азота в год)

    Фиксация азота клубеньковыми бактериями – восстановительный ферментативный процесс, катализатором которого служит фермент нитрогеназа , содержащийся в клетках бактерий. Нитрогеназа – сложный белковый комплекс из 2-х белков (ММ=230 тыс. и 60 тыс.) в состав которого входят атомы Мо и Fe

    Фиксация осуществляется по схеме:


    Переносчикам электронов в окислительно-восстановительном процессе являются атомы Мо и Fe, легко меняющие степени окисления.

    В результате фиксации растения получают азот в доступной для них форме. Другой вид автотрофных бактерий (автотрофы – синтезирующие их простых неорганических соединений сложные органические ) способен окислять азот в аммиаке – осуществлять процесс нитрификации (образование нитритов и нитратов) - то происходит довольно быстро в почвах и водных экосистемах

    Процесс при участии бактерий – нитрозомоназ и нитробактер

    Бактерии азобактер

    Связанный азот в аммонийной и или нитратной форме усваивается растениями и используется в синтезе азотсодержащих органических соединений - аминокислот (структурные единицы белков) и белков растений (причем аммонийный азот является предпочтительной формой доступного азота)

    Растительные белки служат пищей для животных, в организме которых они превращаются в живые белки, либо выводятся из организма.

    После гибели организма бактерии (микроорганизмы) других типом

    В могут расщеплять белки до аминокислот и преобразовывать азот, входящий в состав аминокислот, в NH3 в результате процесса аммонификации - составная часть цикла.

    Пример – микробиологическое разрушение глицина

    При этом NH 3 (а в кислой среде ион NH 4+) возвращается в цикл, помогая восстановлению равновесия (в балансе азота)

    Кроме того в природе постоянно протекают процессы денитрификации – преобразование NO 2- или NO 3- в газообразный азот (преимущественно) или N2O, выделяющийся по схеме.

    Эти процессы под действие динитрифицирущих бактерий и распространены в почвах и водных системах с низким содержанием кислорода, т.е. в анаэробном окружении.

    - в этих условиях безазотные органические вещества окисляются за счет нитратов и нитритов. Последние восстанавливаются до газообразного азота

    Процессы денитрификации являются важными составными частями круговорота азота – они завершают круговорот возвращая в него фиксированный ранее азот. Таким образом при нормальных условиях полное количествоо фиксированного азота, возвращенного в окружающею среду равно полному количеству газообразного азота, возвращенного в окружающую среду

    Схема цикла азота в биосфере может быть представлена следующей схемой:


    Естественный круговорот азота характеризуется очень малой скоростью и сильно подвергается антропогенному воздействию. Оно состоит в значительном (во включении в цикл больших количеств) пополнении цикла азота прежде всего неорганических соединений азота в нитратной и аммонийной формах за счет использования азотных минеральных удобрений – искусственно синтезированных или извлеченных из природных залежей (азот, который выключен из круговорота)

    Для обеспечения урожайности сельскохозяйственных культур ежегодно в почву в мире вносится около 35 млн. т. азота с минеральными удобрениями. В силу высокой подвижности (и слабой удерживаемости почвой) азот в нитратной форме легко вымывается из почв и выносится в водоемы.

    Значительное количество азота поступает в окружающую среду (в почву, воду) с коммунально-бытовыми, производственными отходами, отходами животноводства

    При сложившейся антропогенной нагрузке на азотный цикл деятельность денитрифицирующих бактерий отстает от темпов поступления азота в окружающую среду и в результате наблюдается накопление нитратов и промежуточных продуктов в окружающей среде, сопровождающееся загрязнением питьевой воды, почв, эвтрофикацией водоемов.

    Круговорот Фосфора

    Наличие фосфора (вместе с азотом) удовлетворяет основные потребности живых организмов в питательных веществах.

    Круговорот фосфора проще чем азота и охватывает только литосферу и гидросферу. Газообразные соединения фосфора практически полностью отсутствуют в круговороте. Основным резервуаром фосфора являются горные породы и отложения, образовавшиеся в прошлые геологические эпохи. При этом водная систем является конечным пунктом его движения, которое таким образом в течение небольших отрезков времени – десятков-сотен лет – является односторонним с суши в воду и далее в донные отложения. Т.е. создается впечатление отсутствия цикличности в перемещении фосфора, она проявляется в масштабах геологического времени – миллионов лет

    Естественное включение фосфора в круговорот происходит в результате выветривания иди другого нарушения фосфотических пород с последующи растворение соединений фосфора почвенной влагой которая доносит фосфор до корней растений. Антропогенный путь включения фосфора в цикл – внесение фосфатных минеральных удобрений. При этом основной способ получения соединений фосфора промышленным способом – апатит , фосфорит - (+ вторичное фосфорсодержащее сырье, шлаки, другие отходы)

    Фосфор играет исключительно важную роль в биологических системах. Он в виде остатка фосфорной кислоты входит в состав молекул нуклеиновых кислот РНК и ДНК, ответственных за биосистему белков и передачу наследственной информации.

    Скелет молекулы нуклеиновой кислоты – полиэфирная (точнее нуклеотидная) цепь, в которой сложноэфирная связь образуется между фосфорной кислотой и молекулой углевода (сахаром). В общем виде структура нуклеиновой кислоты выглядит след образом

    В РНК – углеводный фрагмент Д-рибоза (пяти атомарный углевод) в фуранозной (циклической) форме:

    Фосфор входит в состав АТФ (аденозинтрифосфосфата) и АДФ [аденозиндифосфата], который выполняет многие важные функции и биологических системах

    АТФ активирует биохимические реакции (осуществляя фосфорилирование на промежуточных стадиях биохимсинтеза); при помощи АТФ запасается необходимая для биохимпроцессов, протекающих в организме, энергия.

    Выделение энергии происходит при гидролизе АТФ, сопровождающаяся разрывом связи Р-О-Р концевой фосфатной группы

    При этом освобождается энергия ~12 ккал/моль

    В силу важнейшей роли фосфора в биологических процессах его нехватка с окружающей среде может быть фактором, лимитирующим процессы жизнедеятельности (это, кстати, имеет место во многих почвах, так как фосфаты встречаются в определенных типах пород) подобное явление имеет место в океанах – в мировом океане растворено определенное количество фосфора, главным образом – в глубинных слоях, куда не проникает свет и где фосфор не может ассимилироваться (усваиваться) водорослями, таким образом центральная роль океанов малопродуктивна, но в зонах где воды обогащены фосфором и есть свет биопродуктивность высока.

    Упрощенная схема круговорота фосфора

    В конце жизненного цикла фосфор в виде неорганического фосфата возвращается в систему замыкая круговорот.

    Выводится из круговорота фосфор в основном путем осаждения в форме нерастворимых фосфатов железа в водной среде, накапливаясь в глубоководных донных осадках.

    Вмешательство человека в круговорот фосфора проявляется в основном в увеличении избытка фосфат-ионов в водных системах при поступлении в них смытых с полей фосфорных удобрений, неочищенных коммунально-бытовых сточных вод, в состав которых входят фосфорсодержащие моющие вещества (полифосфаты – компоненты многих ПАВ). Избыток же фосфора в воде, ак и избыток азота способствует эвтрофикации водоемов.

    Круговорот серы

    Круговорот серы в окружающей среде сложен и до конца не прояснен. В природе сера встречается в виде самородной серы, но в основном в виде сульфидных и сульфатных минералов (FeS 2 , CuFeS 2 , CaSO 4 *2H 2 O и др.) т.е. преимущественно в СО -2 и +6. И в виде такого же типа минеральных примесей в твердых горючих ископаемых (уголь, горючие сланцы), в виде сульфатных солей и кроме того в виде Н 2 S – сопутствующего компонента природного газа некоторых месторождений. В природных круговорот включается сера из природных источников и в результате деятельности человека.

    Из природных источников сера попадает в атмосферу в виде:

    · H 2 S (извержение вулканов, разложение органического вещества в болотах);

    · SO 2 (извержение вулканов)

    · Аэрозольных частиц сульфатных солей (испарение брызг морской воды)

    · (СH 3) 2 S - продуцирование микроорганизмами (микроводоросли и высшие растения)

    H 2 S быстро окисляется в атмосфере до SO 2 (среднее время жизни H 2 S в атмосфере 2 сут.) тоже самое происходит и с диметилсульфидом.

    Примерно 1/3 всех соединений серы и 99% SO 2, поступающих в окружающую среду, имеют антропогенное происхождение (сжигание серосодержащего топлива, цветная металлургия, производство серной кислоты)

    SO 2 в среднем живет в атмосфере около 4 суток. он окисляется до SO 3 и взаимодействуя с водой образует H 2 SO 4 , является причиной выпадения кислотных дождей

    H 2 SO 4 источник образования сульфатов, сульфаты поступают в почву или выносятся накапливаясь в конечном итоге в морских водах.

    Сера является жизненно важным элементом. Она входит в состав 2-х аминокислот (метионина - незаменимая и цистеина ), т.е. включена в структуру некоторых белков.

    Биосферный круговорот серы базируется на 2-х типах процессов

    Основной тип процессов в биосфере, затрагивающих соединения серы – окислительные

    (фотохимические процессы)

    Химические и фотохимические процессы при доступе воздуха

    В аэробных условиях сульфидные минералы достаточно легко окислятся до сульфатов и H 2 SO 4 кислородом воздуха

    Восстановительные процессы, в которых участвуют соединения серы это в основном биохимические процессы.

    В частности сера сульфатов, задерживающихся в почве, извлекается растениями и в результате биохимических превращений включается в состав белков (в тиольной группе, для большой группы микроорганизмов заменяет O 2 в качестве акцептора электронов при окислении органических соединений)

    растительный белок → животный белок → микробиологические разложение в анаэробных условиях → H 2 S (H 2 S вновь включается в круговорот)

    Таким образом основной биогенный компонент (продукт биохимических реакций) - H 2 S. Наряду с ним в атмосферу выделяется (СH 3) 2 S – образующийся в анаэробных условиях в результате жизнедеятельности ряда микроорганизмов в почве и некоторых высших растений, а так же морских микроорганизмов (продуцируется ими)

    В упрощенном виде цикл серы в окружающей среде можно представить схемой

    Особенность круговорота серы состоит в том, что восстановительные процессы не компенсируют окислительные , поскольку сульфидные соединения при контакте с воздухом и водой постоянно окисляются в сульфаты.

    Точно так же и в антропогенных процессах природные сульфиды переводятся в сульфаты. Т.е. цикл превращений серы не просто круговорот, а кроме того - поступательный процесс, развивающийся в направлении перехода серы от одних устойчивых форм в другие (и.е. от более устойчивых в прежних исторических условиях сульфидов к более устойчивым в современных устойчивых сульфатам). При этом в современных период этот переход дополнительно ускорятся антропогенной деятельностью, приводящей к образованию и накоплению в биосфере продуктов окислительных процессов SO 2 (и H 2 SO 4), нарушающих жизнедеятельность лесных и водных экосистем.

    В качестве итога к рассмотренным круговоротам веществ можно отметить следующее

    Природные круговороты биогенных веществ имеют достаточно высокую степень замкнутости. Протоки биогенных элементов внутри круговоротов существенно превышают по величине потоки вещества в биосфере из внешних источников. Это очень важно, поскольку именно этот факт определяет устойчивость биосферы.

    Дело в том что при замкнутости потока вещества из вне в биосфере могут сформироваться «ущербные экосистемы», включающие ограниченное число видов живых организмов (по существу потребители), н образующие экологические сообщества. Т.н. отдельные экосистемы буду деградировать и не будут стремится к развитию и поддержания разнообразия внутри них («работать не надо, всех долой, а что случись…»)

    Это естественно несет опасность для разнообразия и устойчивости биосферы в целом, поскольку устойчивость прямо связана с разнообразием – как уже отмечалось, биосфера сложная система, а есть общее правило, которому подчиняются сложные системы, чем выше их внутреннее разнообразие, тем они устойчивее, тем в более сложджных условиях они способны существовать.

    На разнообразие в биосфере (как условие поддержания ее устойчивости) оказывает влияние так же величина запасов в биосфере биогенных веществ в органической и неорганической фрмах, которые в принципе д.б. ограниченны и совпадать по порядку величины для того чтобы потоки веществ в процессах синтеза и разложения биосферой были уравновешены.

    Основная опасность вмешательства человека в круговороты как раз и состоит в нарушении установившегося соотношения между величинами потоков веществ внутри круговоротов и внешних потоков.

    Переходим к вопросам поведения химических веществ в окружающей среде

    Закономерности распространения химических веществ в природные среде

    Закономерности распространения химических веществ – одни из ключевых вопросов науки «ХОС» поскольку перемещение химических веществ от источника выброса и переход из одной среды в другую (миграция) главный фактор, обуславливающий химической загрязнение ОС (изменение ее состава и свойств). Химические загрязнения определяются так же и трансформацией веществ их первоначального состояния в другие формы под воздействием различных причин, но все же главный фактор – миграция.

    Пути распространения веществ в окружающей среде в общем виде можно представить схемой:

    От источника выброса химические вещества поступает в одну из сред, либо непосредственно в растительные организмы (ядохимикаты), из которых по пищевой цепи передается в животные организмы. Возможны также взаимные переходы химических веществ между каждой из сред.

    Попадая в окружающую среду (в какую то часть) вещества могут мигрировать в пределах одной среды (геосферы) и также перемещаться через межфазные границы и переходить в другую среду.

    Что влияет на процессы миграции в каждом случае и каковы эти процессы?

    I. В пределах одной среды

    - в водной среде – вещество может перемещаться будучи:

    · в растворимом состоянии

    · адсорбированном на поверхности взвешенных частиц.

    Это перемещение (направление, скорость и т.п.) очевидно будет определятся гидрологическими параметрами.

    - в атмосфере вещества могут находится в виде паров или сорбированном на частицах пыли.

    Перемещение веществ в атмосфере определяется в таком случае метеорологическими параметрами (атмосферными течениями, зависящими от метеоусловий – распределение температуры, давлением в атмосфере, влажностью и т.п.)

    - в почве - миграция несколько отличается от водной и воздушной сред – она осуществляется главным образом в результате диффузии в водной фазе почвы: с другой стороны частицы почвы сами могут перемещаться в атмосфере или воде, перенося сорбированные вещества - в этом случае перенос определяется теми же факторами, которые определяют движение воздуха или воды.

    Кроме того играет роль конвективный массоперенос

    Характер миграции (скорость, направление перемещения) ожжет измениться в результате трансформации вещества - перехода в другие химические формы под действием внешних условий. Например, в водной среде, почве большое влияние на поведение веществ оказывают кислотно-основные и окислительно-восстановительные условия, влияющие на растворимость вещества. Но если не принимать во внимание возможную трансформацию, то можно сделать вывод, что миграция конкретного в пределах одной среды определяется главным образом характеристиками переноса и физико-химическими условиями в данной среде. Влияние характеристик переносимого вещества при это незначительно.

    II. Перемещение между сферами (через межфазные границы)

    В этом случае основное значение имеют физико-химические свойства вещества (прежде всего те, которые определяют установление межфазного равновесия).

    Коротко о процессах, определяющих межфазные переходы и основных факторах, которые имеют значение при определении возможности перемещения вещества через различные поверхности раздела фаз.

    1. вода ↔ почва – перемещение через эту границу раздела играет важную роль, например, в процессе загрязнения вод в результате применения химических препаратов на сельскохозяйственных землях (которые затем вымываются из почвы дождями), а так же в процессе загрязнения почв, контактирующих с загрязненными водами.

    Для всех переходов химических веществ через границу вода почва основную роль играет адсорбционно-десорбционные процессы (протекающие по различным механизмам – физическая адсорбция, хемосорбция). Таким образом этот переход по существу процесс адсорбции-десорбции. Это равновесные процессы ________ которых зависит от:

    · растворимости вещества в воде;

    · от свойств вещества, определяющих адсорбцию на твердой поверхности

    2. вода ↔ воздух

    Переход вещества из водного раствора в воздух – испарение – осуществляется в результате диффузии. Обратный процесс называется сухое осаждение в воду. Оба этих процесса относятся к динамическим (а не равновесным), имеют одинаковые закономерности, но противоположно направленные. На границе раздела фаз вода-воздух имеют значение прежде всего:

    давление насыщенных паров вещества

    · растворимость его в воде

    3. почва ↔ воздух.

    Переход из почвы в атмосферу – испарение из почвы, обратный переход – сухое осаждение в почву.

    Миграционные процессы между этими средами наиболее сложны в силу сложности строения почвы. Почва – многофазная система, включая твердую фазу, жидкую и газообразную фазу. В свою очередь твердая фаза так же по химическому составу неоднородна и состоит из органических и минеральных составляющих. Таки образо здесь большое значение имеют обменные процессы ж/ТВ фаза, ж/газ, тв. фаза/газ.

    Очевидно перенос вещества между средами почва ↔ воздух зависит:

    · от свойств вещества, определяющих адсорбцию на часицах почвы

    · давление насыщенных паров

    · присутствие воды в почве, которая влияет на перемещение вещества на границе раздела фаз

    4. физическая система ↔ биологическая система

    граница раздела между этими системами существенно отличается от рассматриваемых систем. Здесь вещество, проникая в организм, проходит через биологическую (клеточную) мембрану, структура которой играет главную роль в переносе.

    Геохимические барьеры

    Миграция вещества в окружающей среде может привести в конечном итоге к его рассеянию или накоплению. Накопление вещества происходит в так называемых геохимических барьерах.

    Геохимические барьеры – участки (части) биосферы, где происходит резкое замедление скорости миграции и, соответственно, накопление вещества, удерживание токсичных химических веществ в геохимических барьерах очищает потоки вещества и ограничивает сферу загрязнения.

    Геохимические барьеры биосферы разделяет на 2 основных типа:

    · Природные

    · техногеные

    Те и другие разделяются на участках изменения геохимической обстановки. В случае природных барьеров смена геохимической обстановки обусловлена природными особенностями конкретного участка биосферы, где формируется барьер. Техногенный барьер возникает при смене геохимической обстановки в результате антропогенной деятельности.

    Оба типа барьеров разделяют на 3 класса:

    · биогеохимические

    · механические

    · физико-химические.

    Биогеохимические – возникают при интенсивном закреплении химических веществ живыми организмами. Примером биогеохимического барьера может быть накопление в высоких концентрациях сельскохозяйственными культурами веществ, используемых при отработке сельскохозяйственных земель. Обычно такое накопление происходит при внесении чрезмерных доз удобрений или ядохимикатов (средств защиты растений).

    Механические барьеры – участки с резким уменьшением интенсивности механического перемещения химических веществ. Они возникают при изменении скорости воздушных или водных потоков, например, при изменении направления русла реки, при наличии плотины на реке.

    Механический барьер может возникнуть вследствие фильтрационного эффекта – таким барьером могут быть пористые породы. Механическим барьером для дисперсных частиц в приземном слое атмосферы являются лесополосы, на которых откладывается, большое количество пыли, выдуваемой из почв при обработке сельскохозяйственных земель.

    Физико-химические барьеры – возникают при изменении физико-химических условий среды, в которой перемещается вещество. В них подвижность веществ уменьшается за счет, например, адсорбция, изменение степени окисления, образование гидроксидов (или др. нерастворимых форм) и т.п.

    Распространенным типом физико-химических барьеров является щелочные барьеры в роли которых выступают карбонатные породы, концентрирующие многие элементы. Примером техногенного физико-химического барьера могу служить часто встречающие сероводородные барьеры. Они формируются в водных объектах при наличии сульфат-ионов в воде и поступление значительного количества органических веществ, например, со сточными водами населенных пунктов. Органические вещества, разлагаясь, поглощают растворенный в воде свободный кислород, так что формируются анаэробные условия и в роли окислителя выступает ион SO 4 2- При этом сульфатная сера (S 6+) восстанавливается до сульфидной, а сульфид-ион связывает многие элементы (сульфиды большинства металлов нерастворимы). Это ведет к остановке миграции элементов в водной среде и их накопление в таком сероводородном барьере.

    Геохимические барьеры не остаются неизменными. По мере накопления на барьерах различных веществ возможно разрушение исходных и образование новых барьеров. Например, карбонатные породы литосферы могут являться барьером для миграции Са 2+ - в них Са закрепляется, образуется нерастворимый кальцит СаСО 3 Но далее кальцит выступает как щелочной карбонатный барьер для многих элементов: Pb, Zn, Cd и др.

    Геохимические барьеры обладают определенной емкостью по отношению к отдельным веществам, например емкость щелочного барьера в почвах определяется количеством карбонатов, способных нейтрализовать кислые техногенные потоки. Емкость сорбционного барьера зависит от свойств и мощности сорбирующего слоя. Емкость восстановительного и окислительного барьеров зависят от окислительно-восстановительных свойств среды (которые в значительной мере определяются микробиологической активностью).

    Химической загрязнение окружающей среды главным образом определяется возможностью перемещения (миграции) химических веществ от источника выброса на значительные расстояния. Вещества могут распространятся в пределах одной среды, куда они поступают, но могут переходить и в другие среды, распространяясь в них. Перемещение веществ в окружающей среде происходит главным образом в результате процессов испарения, адсорбции, диффузии. При этом миграционная способность веществ зависит от ряда физико-химических свойств.

    Приведем общую характеристику некоторых из этих свойств, определяющих перемещение веществ в окружающей среде и процессов миграции.

    Нормативы допустимой антропогенной нагрузки на окружающую среду

    В целях предотвращения негативного воздействия на окружающую среду хозяйственной и иной деятельности для юридических и физических лиц природопользователей устанавливаются следующие нормативы допустимого воздействия на окружающую среду:

    Нормативы допустимых выбросов и сбросов веществ и микроорганизмов;

    Нормативы образования отходов производства и потребления и лимиты на их размещение;

    Нормативы допустимых физических воздействий (количество тепла, уровни шума, вибрации, ионизирующего излучения, напряжённости электромагнитных полей и иных физических воздействий);

    Нормативы допустимого изъятия компонентов природной среды;

    И ряд других нормативов.

    За превышение данных нормативов субъекты несут ответственность в зависимости от причиненного окружающей среде вреда. Необходимо применять и разрабатывать меры по снижению отрицательного воздействия деятельности человека на состояние окружающей среды.

    Меры по снижению отрицательного воздействия антропогенных факторов и обеспечению благоприятного состояния окружающей среды

    Для устранения отрицательного воздействия химических средств защиты растений на окружающую среду важное место отводится рациональному применению пестицидов в интегрированных, или комплексных, системах защиты растений, основой которых является возможно полное использование факторов среды, вызывающих гибель вредных организмов или ограничивающих их жизнедеятельность.

    Основной задачей таких систем является удержание численности вредных насекомых на уровне, когда они не приносят ощутимого вреда, с использованием не одного какого-либо метода, а комплекса мероприятий.

    Учитывая, что химический метод является ведущим, его совершенствованию уделяется исключительно большое внимание.

    Ведущий принцип рациональной химической борьбы заключается в полном учете экологической обстановки на сельскохозяйственных угодьях, точном знании критериев численности вредных видов, а также численности полезных организмов, подавляющих развитие вредителей.

    Существует четыре главных направления повышения безопасности химического метода защиты растений:

    Совершенствование ассортимента пестицидов в направлении уменьшения их токсичности для человека и полезных животных, снижение персистентности, повышения избирательности действия.

    Использование оптимальных способов применения пестицидов, таких, как предпосевная обработка семян, ленточные и полосные обработки, использование гранулированных препаратов.

    Оптимизация использования пестицидов с учетом экономической целесообразности и необходимости применения пестицидов для подавления популяций.

    Строжайшая регламентация использования пестицидов в сельском хозяйстве и других отраслях на основе всестороннего изучения их санитарно-гигиенических характеристик и условий обеспечения безопасности при работе. В настоящее время высокотоксичные и стойкие в природе соединения заменяются малотоксичными и малостойкими.

    В целях сохранения полезных насекомых для химической обработки необходимо использовать высокоизбирательные препараты, ядовитые только для определенных вредных объектов и малоопасные для естественных врагов вредителей. Важным путем повышения избирательности действия пестицидных препаратов широкого спектра действия является рационализация приемов их применения с учетом экономического порога вредоносности для каждого вида вредителя в зональном разрезе. Это позволяет сократить площади или кратности химических обработок без ущерба для защищаемой культуры. В целях предотвращения загрязнения остатками пестицидов почвы следует максимально ограничивать внесение в почву стойких пестицидов, а там, где это необходимо, вносить быстро разрушающиеся препараты локально, что уменьшает норму расхода пестицида.

    Качественно новый этап развития защиты растений, характеризующий перевод ее на экологическую основу, предопределяет обоснованное, технически грамотное управление фитосанитарным состоянием агроценозов. Стратегия защиты растений в настоящее время и в будущем основывается на высокой агротехнике, максимальном использовании природных сил агроценозов, повышении устойчивости выращиваемых культур к вредным организмам, расширенном применении биологического метода, рациональном использовании химических средств.

    Неумеренное и противоречащее рекомендациям применение пестицидов может нанести большой ущерб окружающей среде. Упорядочение их использования, исключение из ассортимента наиболее опасных соединений приводит к уменьшению загрязнения природы, следовательно, снижения поступления в организм людей.

    Применение любого пестицида в каждом конкретном случае должно проводиться на основании утверждённых инструкций, рекомендаций, методических указаний и положений по технологии, регламенту применения. Одним из важных требований является обезвреживание и правильная Утилизация тары из под пестицидов.

    В целом можно сказать, что внедрение экологизированной интегрированной защиты растений в практике показывает, что этот метод имеет преимущество перед отдельными приемами защиты растений. А при применении нулевых технологий без него просто не обойтись.