Фазовый переход ферромагнетик парамагнетик. Лабораторная работа: Определение температуры фазового перехода ферромагнетик-парамагнетик. Определение температуры фазового перехода

Цель работы : определить температуру Нееля для ферримагнетика (ферритового стержня)

Краткие теоретические сведения

Всякое вещество является магнетиком, т.е. способно под воздействием на него магнитного поля приобретать магнитный момент. Таким образом вещество создает магнитное поле , которое накладывается на внешнее поле . Оба поля в сумме дают результирующее поле:

Намагничивание магнетика характеризуют магнитным моментом единицы объема. Эту величину называют вектором намагничивания

где - магнитный момент отдельной молекулы.

Вектор намагничивания связан с напряженностью магнитного поля следующим соотношением:

где c - характерная для данного вещества величина, называемая магнитной восприимчивостью.

Вектор магнитной индукции связан с напряженностью магнитного поля:

Безразмерная величина называется относительной магнитной проницаемостью.

Все вещества по магнитным свойствам могут быть разделены на три класса:

1) парамагнетики m > 1 в которых намагниченность увеличивает суммарное поле

2) диамагнетики m < 1 в которых намагниченность вещества уменьшает суммарное поле

3) ферромагнетики m >> 1 намагниченность увеличивает суммарное магнитное поле.

Вещество является ферромагнетиком, если оно обладает самопроизвольным магнитным моментом даже в отсутствие внешнего магнитного поля. Намагниченность насыщения ферромагнетика I S определяется как самопроизвольный магнитный момент единицы объема вещества.

Ферромагнетизм наблюдается у 3d -металлов (Fe , Ni , Co ) и 4f металлов ( Gd , Tb , Er , Dy , Ho , Tm ) , кроме того имеется огромное количество ферромагнитных сплавов. Интересно отметить, что ферромагнетизмом обладают только 9 перечисленных выше чистых металлов. Все они имеют недостроенные d - или f - оболочки.

Ферромагнитные свойства вещества объясняются тем, что между атомами этого вещества существует особое взаимодействие, не имеющее места в диа- и парамагнетиках, приводящее к тому, что ионные или атомные магнитные моменты соседних атомов ориентируются в одном направлении. Физическая природа этого особого взаимодействия, получившего название обменного, была установлена Я.И. Френкелем и В. Гейзенбергом в 30-х годах XX века на основе квантовой механики. Исследование взаимодействия двух атомов с точки зрения квантовой механики показывает, что энергия взаимодействия атомов i и j , имеющих спиновые моменты S i и S j , содержит член, обусловленный обменным взаимодействием:

где J – обменный интеграл, наличие которого связано с перекрытием электронных оболочек атомов i и j . Значение обменного интеграла сильно зависит от межатомного расстояния в кристалле (периода кристаллической решетки). У ферромагнетиков J >0, в случае, если J<0 вещество является антиферромагнетиком, а при J =0 – парамагнетиком. Обменная энергия не имеет классического аналога, хотя и имеет электростатическое происхождение. Она характеризует различие в энергии кулоновского взаимодействия системы в случаях, когда спины параллельны и когда они антипараллельны. Это является следствием принципа Паули. В квантово-механической системе изменение относительной ориентации двух спинов должно сопровождаться изменением пространственного распределения заряда в области перекрытия. При температуре Т =0 К спины всех атомов должны быть ориентированы одинаково, при повышении температуры упорядоченность в ориентации спинов уменьшается. Существует критическая температура, называема температурой (точкой) Кюри Т С , при которой исчезает корреляция в ориентациях отдельных спинов, - вещество из ферромагнетика становится парамагнетиком. Можно выделить три условия благоприятствующие возникновению ферромагнетизма

1) наличие у атомов вещества значительных собственных магнитных моментов (это возможно только в атомах с недостроенными d - или f - оболочками);

2) обменный интеграл для данного кристалла должен быть положительным;

3) плотность состояний в d - и f - зонах должна быть велика.

Магнитная восприимчивость ферромагнетика подчиняется закону Кюри-Вейсса :

, С – постоянная Кюри.

Ферромагнетизм тел, состоящих из большого числа атомов, обусловлен наличием макроскопических объемов вещества (доменов), в которых магнитные моменты атомов или ионов параллельны и одинаково направлены. Эти домены обладают самопроизвольной спонтанной намагниченностью даже при отсутствии внешнего намагничивающего поля.

Модель атомной магнитной структуры ферромагнетика с гранецентрированной кубической решеткой. Стрелками показаны магнитные моменты атомов.

В отсутствие внешнего магнитного поля в целом ненамагниченный ферромагнетик состоит из большего числа доменов, в каждом из которых все спины ориентированны одинаково, но направление их ориентации отличается от направлений спинов в соседних доменах. В среднем в образце ненамагниченного ферромагнетика одинаково представлены все направления, поэтому макроскопического магнитного поля не получается. Даже в одиночном кристалле имеются домены. Разделение вещества на домены происходит потому что оно требует меньше энергии, чем расположение с одинаково ориентированными спинами.

При помещении ферромагнетика во внешнее поле, магнитные моменты параллельные полю будут иметь энергию меньшую, чем моменты, антипараллельные полю или направленные как ни будь иначе. Это дает преимущество некоторым доменам, которые стремятся увеличится в объеме за счет других, если это возможно. Также может происходить поворот магнитных моментов в пределах одного домена. Таким образом слабое внешнее поле может вызвать большое изменение намагниченности.

При нагревании ферромагнетиков до точки Кюри тепловое движение разрушает области спонтанной намагниченности, вещество теряет особые магнитные свойства и ведет себя как обычный парамагнетик. Температуры Кюри для некоторых ферромагнитных металлов приведены в таблице.

Вещество

Fe

Ni

Co

Gd

Кроме ферромагнетиков существует большая группа магнитоупорядоченных веществ, в которых спиновые магнитные моменты атомов с недостроенными оболочками ориентированы антипараллельно. Как показано выше, такая ситуация возникает в случае, когда обменный интеграл отрицателен. Так же, как и ферромагнетиках, магнитное упорядочение имеет место здесь в интервале температур от 0 К до некоторой критической Q N , называемой температурой Нееля. Если при антипараллельной ориентации локализованных магнитных моментов результирующая намагниченность кристалла равна нулю, то имеет место антиферромагнетизм . Если же при этом полной компенсации магнитного момента нет, то говорят об ферримагнетизме . Наиболее типичными ферримагнетиками являются ферриты – двойные окислы металлов. Характерным представителем ферритов является магнетит (Fe 3 O 4). Большинство ферримагнетиков относятся к ионным кристаллам и поэтому обладают низкой электропроводностью. В сочетании с хорошими магнитными свойствами (высокая магнитная проницаемость, большая намагниченность насыщения и др.) – это важное преимущество по сравнению с обычными ферромагнетиками. Именно это качество позволило использовать ферриты в технике сверхвысоких частот. Обычные ферромагнитные материалы, обладающие высокой проводимостью, здесь применяться не могут из-за очень высоких потерь на образование вихревых токов. Вместе с тем у многих ферритов точка Нееля очень низкая (100 – 300 °С) по сравнению с температурой Кюри для ферромагнитных металлов. В настоящей работе для определения температуры перехода ферримагнетик-парамагентик используется стержень, изготовленный именно из феррита.

Страницы:


Ufr>=C(r>^£!r> (r^l,2), (21) где s"rl - диэлектрическая проницаемость г -й среды.

По полученным соотношениям были проведены расчеты,

у(\)

характеризующие порядок степенной особенности у = 1 - - в вершине


составного клина при щ = я/2, а2=я (табл.1). Для случаев щ - щ = 2ж/3 , р1 = 0.5 , - , X - 3 и Л - 0.01 построены изотермические линии (рис.2 и рис.3 соответственно).

SUMMARY

Different questions mechanics of composite materials, heat conductivity, electrostatics, magnetostatics, mathematical biology result in boundary problems of elliptic type for piecewise homogeneous mediums. When the border of area has angular points for correct determination о/ physical fields it is necessary to have the information about fields singularities In an angular point- It is considered u problem of the potential theory for compound wedge . Green"s function Is built for situation when the concentrated source works in one of phases .

СПИСОК ЛИТЕРАТУРЫ

1. Арсеїшн В.Я., Мнтематическля физика. Основные уравнения и специальные функции.- Щ Наука, 1966.

УДК 537.624

ФАЗОВЫЙ ПЕРЕХОД ПАРАМАГНЕТИК-ФЕРРОМАГНЕТИК В СИСТЕМЕ ОДНОДОМЕНЛЫХ ФЕРРОМАГНИТНЫХ ЧАСТИЦ

С.И.Денисов, проф.; В.Ф.Иефедченко, осп.

Хорошо известно , что причиной появления дальнего магнитного порядка в большинстве известных в настоящее время магнетиковзз.-.^:..-. обменное взаимодействие. Вместе в тем еще в 1946 году - _^ г :г Тисса теоретически ШЖВМЛЯі ч ги мпгнптидииолькас взаимодействие также может выполнять эту роль. Поскольку последнее швкмз-еястйие, как правило, намного слабее обменного, температура перехода із упорядоченное состояние еиетемы атомных

Момянтое, взаимодействующих маї читолнпол^ньш оОрл.чиг,:,
вызывается очень малой и составляет доли градуса Кельвина. Это

Г^лъство, а также отсутствие веществ, в которых иерархический рил магнитных взаимодействий начинается с маггштодипольного, долгое щжжл не позволяли провести экспериментальную проверку этой

- >ы. И только недавно соответствующая проверка, подтиерд нетал вывод Латтинжера и Тиссы, была проведена в на кристаллах солей КОРЕЯХ земель, имеющих химическую формулу Cs^Naii(N02)e.

"Квасе систем, в которых магнитодипольное взаимодействие
еируктурных элементов играет основную роль, включает также системы
«азсдоменных ферромагнитных частиц, случайно распределенных в
ввмагнитной твердой матрице. Исследованию таких систем, чрезвычайно
ашЕзых с практической точки зрения, посвящено много литературы.
Ойвако изучение кооперативных эффектов в них начато только в
последние годы. Основной результат, полученный как численными ,
да и аналитическими , так и прямыми экспериментальными данными,
состоит в том, что так же, как и в системах атомных магнитных
моментов, в системах однодоменных ферромагнитных частиц может
„■ходить (разовый переход ферромагнитное состояние. Хотя

некоторые особенности этого перехода изучены в , остались
нерешенными многие важные вопросы. Среди них, в частности,
яржнтшпиальный вопрос о влиянии на фазовый переход анизотропии
растре л чтения частиц в пространстве. Дело в том, что аналитические
методы, развитые в ,
предсказывают существование фазового
перехода и для изотропного распределения частиц. Однако этот вывод
противоречит одному из результатов , согласно которому в системе
ч. ;. :-.ь.х диполей, расположенных в узлах
простои куопческой
решетки, фазовый переход в ферромагнитное состояние не происходит.
Ржеее не рассматривался также вопрос о влиянии конечности размера
Шш§ амагкитнЫХ частиц на величину среднего магнитного поля,
мвйствуюгцего на какую-либо частицу со стороны остальных. Между тем
его решение необходимо, в частности, для построения количественной
-- кооперативных эффектов в ЙИСТамаЯ ПДОТНвуИаЙОваЯЯЫХ частиц.

Решению отмеченных выше вопросов как раз и посвящена данная работа. Рассмотрим ансамбль сферических однодоменных ферромагнитных

Радиуса г, случайно распределенных л немагнитной твердой
хгтрице. Распределение частиц в матрице будем моделировать,

что их центры с вероятностью р занимают узлы простой

тетрагональной решетки, имеющей периоды dx(>2r) (вдоль осей х и у ) и Лг{>2г\ (вдоль оси 2 - оси четвертого порядка). Будем также ^ре.гліо.тагать, что частицы одноосные, их легкие оси намагничивания z±: -=:;-;:кулярны плоскости ху, взаимодействие частиц , _-- ;-. ;,:гилыюе, а динамика магнитного момента т=чп|і| ОрРвавоА&не ..й частицы описывается стохастическим уравнением Ланлау-

...

m - -ута х (Н + h) - (Ху j m)m к m x H (m(0) = e,m). (1)

4вка ,4>0)- гиромагнитное отношение; Я - параметр диссипации; m=|m|; е. - единичный вектор вдоль оси г; Н - -rfVfcia - эффективное ,= С-.лЗУи. 1999. Х>2(13)


13 магнитное поле; W - магнитная энергия частицы; h - тепловое магнитное ноле, определяемое соотношениями:

к ш = о. +?) = шт%0Щ$0д, (2)

где Т - абсолютная температура; $ц# - симиол Кроненера; a,fi=x,y.z Щ т)- (ї-функция, а черта обозначает усреднение по реализациям h.

Согласно выбранной модели в приближении среднего ноля имеем

W -(Haj2m)ml - H(t)m, , (3)

где Н/, - поле магнитной анизотропии; H(t) ~ среднее магнитное поле, действующее на выделенную частицу со стороны остальных. В (3) мы учли, что в соответствии с симметрийцыми соображениями в рассматриваемом случае среднее поле имеет только 2 -компоненту. Поместив начало координат в узел решетки, занимаемый выделенной частицей, и пронумеровав остальные индексом і, выражение для H(tj Представим в виде

(7)Наконец, отождествив в (7) выражение в скобках с тг(і) , учтя соотношение ШПу^м - Р и определив функцию 1 v 2-лі- 4

г 2 2 г2 2 "i .™s,"a ["і + 1д + С," П§


(8) {g = d2/dl), для среднего магнитного поля получаем следующее выражение:

Шй^ЩЩтМ, (9)

гае л = pfd-fd? - концентрация частиц.

Характерной особенностью функции S(^), обусловливающей

особенности магнитных свойств трехмерного
ансамбля однодоменных частиц, анизотропно
распределенных в пространстве, является
непостоянство ее знака: S( £)>0 при ljи
S(g)<0 цри £>1 (см. рис. 1). Согласно (9) это
означает, что при
f направления средних
магнитных моментов частиц и среднего
магнитного поля совпадают, а при
£>1 имеют
противоположные направления.
^-Следовательно, ферромагнитное упорядочение
в системах однодомепных частиц имеет место
~лишь при В частности, а полном

соответствии с предсказанием Латтинжера и
Тиссы к случае |- 3, отвечающем простой
Рисунок і кубической решетке, ферромагнитное

О"чьние отсутствует. Отметим также, что ферромагнитный порядок отсутствует и в предельном случае двухмерного распределения частиц, когда f = », a S(*>)*> -1,129.

Согласно (2),{3) и (9) стохастическому уравнению (1), интерпретируемому по Стратоновичу , отвечает уравнение Фоккера-Планка

- = - - j |a(ain 29 + 2b(t) sin в) - cot antfjP + - J (10)

= 2/ZyHa, a = Ham/2kT, Щ = H(t)/Ha ), для плотности (P=P(0,t)) if--: .^ тіі"сгї : того, что вектор m в момеВІ врамвВИ 1 гмеет полярный уГОЛ 6. Полагая, что на границах интервала (0,;г) изменения угла 0 поток вероятности отсутствует, находим стационарное решение уравнения (10):

(И)

гзе C(a,2ab)


(12) Вісник СидДУ». iS°S, №2(13)


15 (b=b(fj)). Определим параметр порядка рассматриваемой системы

однодоменных частиц как - т,г(со)/т. Тогда, воспользовавшись соотношением

(13)

И выражениями (11) и (12), для /.і получаем уравнение2е°

С(а,ЗТ0 ц/Г)


Sinn


т; г


(И) гдеГ0 - onm 2 ZS (£)/3k.

Анализ уравнения (14) показывает, что в соответствии с изложенными выше физическими соображениями при ££J (когда Тд<0) оно имеет единственное решение /(=0 при любых температурах, т.е. дальний порядок в этом случае не возникает. Ненулевое же решение может существовать лишь при £<1. Как и в случае уравнения Ланжевена, p=co\&nh{3Tnp./T)-T/3T0fi, к которому сводится уравнение (14) при Н„-*0, оно существует, если при /t~ »0 тангенс угла наклона касательной к графику функции, определяемой правой частью (14), превышает 1. Легко проверить, что это условие выполняется при Т<Т^Г, где Tcr ~ температура фазового перехода парамагнетик-ферромагнетик, которая определяется как решение уравнения T=3T0f(a) ( f(a)=}