Интегрирование по частям в многомерном случае. Основные методы интегрирования. Более короткое решение

Неопределенный интеграл

1Первообразная и неопределенный интеграл 1

2Простейшие свойства неопределенного интеграла. 3

Таблица основных интегралов 3

2.1Дополнительная таблица интегралов 4

3Замена переменной в неопределённом интеграле 5

3.1Метод интегрирования функций вида и (a≠ 0). 6

4Интегрирование по частям в неопределённом интеграле 7

4.1Метод интегрирования функций вида. 7

4.2Метод интегрирования функций вида: 8

5Интегрирование рациональных дробей 8

5.1Метод интегрирования простейших дробей 4 типа. 11

6Интегрирование иррациональных выражений 12

6.1Интегрирование тригонометрических выражений 14

  1. Первообразная и неопределенный интеграл

Решаем дифференциальное уравнение

на интервале , т.е. находим такую функцию , что . Так как , то уравнение (1) можно переписать в дифференциалах:

Любое решение такого уравнения называется первообразной функции . Итак, функция называется первообразной функции на интервале , если для всех . Случаи и/или не исключаются. Ясно, что если первообразная, то и также первообразная. Наша задача – найти все решения уравнения (1). Функция двух переменных называется общим решением уравнения (1) или, по-другому, неопределенным интегралом функции , если при подстановке вместо любого числа получаем частное решение уравнения (1) и любое частное решение уравнения (1) получается таким образом.

Неопределённый интеграл обозначается . Функция называется подинтегральной, дифференциал называется подинтегральным выражением, а -- знак интеграла (растянутая латинская буква S, первая буква слова Sum – сумма). Возникает вопрос о существовании первообразной и неопределенного интеграла. В разделе «Определенный интеграл», § Формула Ньютона-Лейбница будет доказано, что первообразная непрерывной функции всегда существует.

Лемма. Пусть тождественно для всех . Тогда -- константа на этом интервале.

Доказательство. Обозначим для какой-либо точки . Возьмём произвольную точку и к разности применим теорему Лагранжа: для некоторой точки . Отсюда и лемма доказана.□

Теорема о первообразных. Две первообразных одной и той же функции, определенной на интервале, отличаются на константу.

Доказательство. Пусть и -- первообразные функции . Тогда откуда, по лемме -- константа. Следовательно, . □

Следствие. Если -- первообразная функции , то .

Заметим, что если в качестве ОДЗ функции взять не интервал, а, например, такое несвязное множество как объединение двух интервалов , то любая функция вида

имеет нулевую производную, и тем самым лемма и теорема о первообразных перестает быть верной в этом случае.

  1. Простейшие свойства неопределенного интеграла.

1. Интеграл от суммы равен сумме интегралов:

2. Константу можно выносить за знак интеграла:

3. Производная от интеграла равна подинтегральной функции.

4. Дифференциал от интеграла равен подинтегральному выражению.

5. (Линейная замена переменных) Если , то (здесь ).

Таблица основных интегралов

В частности,

Для исключительного случая имеем:

    1. Дополнительная таблица интегралов

  1. Замена переменной в неопределённом интеграле

Определение неопределенного интеграла распространим на более общий случай: полагаем по определению . Таким образом, например

Теорема. Пусть -- дифференцируемая функция. Тогда

Доказательство. Пусть . Тогда

что и требовалось доказать.□

В частном случае, когда получаем линейную замену переменных (см. свойство 5, §1). Применение формулы (1) "слева на право" и будет означать замену переменной. Применение формулы (1) в обратном направлении, "справа налево" называется занесением под знак дифференциала.

Примеры. А.

1. Выделяем в числителе производную квадратного трехчлена:

3. Для вычисления первого интеграла в (2) применяем занесение под знак дифференциала:

Для вычисления второго интеграла выделяем в квадратном трехчлене полный квадрат и линейной заменой переменных сводим его к табличному.

Таким же методом вычисляются и интегралы вида

Примеры

  1. Интегрирование по частям в неопределённом интеграле

Теорема. Для дифференцируемых функций и имеет место соотношение

Доказательство. Интегрируя левую и правую часть формулы , получаем:

Так как по определению и , то формула (1) следует.□

Пример.

Для интегрирования таких функций заносим многочлен под знак дифференциала и применяем формулу интегрирования по частям. Процедуру повторяем k раз.

Пример.

  1. Интегрирование рациональных дробей

Рациональной дробью называется функция вида , где – многочлены. Если , то рациональную дробь называют правильной . В противном случае ее называют неправильной .

Следующие рациональные дроби называют простейшими

(2 тип)

(3 тип)

(4 тип) ,

Теорема 1. Любую дробь можно разложить в сумму многочлена и правильной рациональной дроби.

Доказательство. Пусть – неправильная рациональная дробь. Поделим числитель на знаменатель с остатком: Здесь -- многочлены, причем Тогда

Дробь правильная в силу неравенства . □

Теорема 2. Любую правильную рациональную дробь можно разложить в сумму простейших.

Алгоритм разложения.

а) Знаменатель правильной дроби раскладываем в произведение неприводимых многочленов (линейных и квадратичных с отрицательным дискриминантом):

Здесь и -- кратности соответствующих корней.

б) Раскладываем дробь в сумму простейших с неопределенными коэффициентами по следующим принципам:

Так мы поступаем для каждого линейного множителя и для каждого квадратичного множителя.

в) Получившееся разложение умножаем на общий знаменатель , и неопределенные коэффициенты отыскиваем из условия тождественности левой и правой части. Действуем комбинацией двух методов

??? – обоснование алгоритма

Примеры. А. Разложим в сумму простейших

Отсюда следует, что . Подставляя в это соотношение находим сразу . Итак

Б. Разложим рациональную дробь в сумму простейших. Разложение этой дроби с неопределенными коэффициентами имеет вид

Умножая на общий знаменатель, получаем соотношение

Подставляя сюда , находим , откуда . Подставляя находим . Приравнивая коэффициенты при получаем систему

Отсюда и . Складывая равенства последней системы, получаем и . Тогда и

Следовательно,

/**/ Задача. Обобщить результат примера А и доказать равенство

    1. Метод интегрирования простейших дробей 4 типа.

а) Выделяя в числителе производную знаменателя, разложим интеграл в сумму двух интегралов.

б) Первый из получившихся интегралов, после занесения под знак дифференциала, станет табличным.

в) Во втором в знаменателе выделяем полный квадрат и сводим вычисление к интегралу вида . К этому интегралу применяем следующую рекуррентную процедуру

К последнему интегралу применяем формулу интегрирования по частям:

Итак, если обозначить , то

Это представляет собой рекуррентную формулу вычисления интегралов c учетом начального значения .

Пример

  1. Интегрирование иррациональных выражений

Интегралы вида , где m/n,...,r/s -- рациональные числа с общим знаменателем k, сводятся к интегралу от рациональной функции заменой

Тогда суть рациональные выражения, следовательно, после подстановки, получается интеграл от рациональной дроби:

Вычислив этот интеграл (см. пар. 4) и сделав обратную замену , получим ответ.

Аналогично, интегралы вида

где ad-bc≠ 0, а k имеет тот же смысл как и выше, сводятся к интегралам от рациональной дроби заменой

Примеры . А. Вычислим интеграл

Б. Вычислим интеграл

Более простой метод интегрирования (но требующий догадки) этой же функции таков:

    1. Интегрирование тригонометрических выражений

Интегралы вида сводятся к интегралам от рациональной функции универсальной заменой

поэтому получаем интеграл от рационального выражения

В частных случаях  R(sin x) cos x dx,  R(cos x) sin x dx и R(sin 2 x, cos 2 x, tg x, ctg x) dx лучше пользоваться заменами соответственно.

Рассмотрим функции $u=u(x)$ и $v=v(x)$, которые имеют непрерывные производные . Согласно свойствам дифференциалов, имеет место следующее равенство:

$d(u v)=u d v+v d u$

Проинтегрировав левую и правую части последнего равенства, получим:

$\int d(u v)=\int(u d v+v d u) \Rightarrow u v=\int u d v+\int v d u$

Полученное равенство перепишем в виде:

$\int u d v=u v-\int v d u$

Эта формула называется формулой интегрирования по частям . С ее помощью интеграл $\int u d v$ можно свести к нахождению интеграла $\int v d u$, который может быть более простым.

Замечание

В некоторых случаях формулу интегрирования частями нужно применять неоднократно.

Формулу интегрирования по частям целесообразно применять к интегралам следующего вида:

1) $\int P_{n}(x) e^{k x} d x$ ; $\int P_{n}(x) \sin (k x) d x$ ; $\int P_{n}(x) \cos (k x) d x$

Здесь $P_{n}(x)$ - многочлен степени $n$, $k$ - некоторая константа. В данном случае в качестве функции $u$ берется многочлен, а в качестве $d v$ - оставшиеся сомножители. Для интегралов такого типа формула интегрирования по частям применяется $n$ раз.

Примеры решения интегралов данным методом

Пример

Задание. Найти интеграл $\int(x+1) e^{2 x} d x$

Решение.

$=\frac{(x+1) e^{2 x}}{2}-\frac{1}{2} \int e^{2 x} d x=\frac{(x+1) e^{2 x}}{2}-\frac{1}{2} \cdot \frac{1}{2} e^{2 x}+C=$

$=\frac{(x+1) e^{2 x}}{2}-\frac{e^{2 x}}{4}+C$

Ответ. $\int(x+1) e^{2 x} d x=\frac{(x+1) e^{2 x}}{2}-\frac{e^{2 x}}{4}+C$

Пример

Задание. Найти интеграл $\int x^{2} \cos x d x$

Решение.

$=x^{2} \sin x-2\left(x \cdot(-\cos) x-\int(-\cos x) d x\right)=$

$=x^{2} \sin x+2 x \cos x-2 \int \cos x d x=$

$=x^{2} \sin x+2 x \cos x-2 \sin x+C=\left(x^{2}-1\right) \sin x+2 x \cos x+C$

Ответ. $\int x^{2} \cos x d x=\left(x^{2}-1\right) \sin x+2 x \cos x+C$

2) $\int P_{n}(x) \arcsin x d x$ ; $\int P_{n}(x) \arccos x d x$ ; $\int P_{n}(x) \ln x d x$

Здесь принимают, что $d v=P_{n}(x) d x$, а в качестве $u$ оставшиеся сомножители.

Пример

Задание. Найти интеграл $\int \ln x d x$

Решение. В исходном интеграле выделим функции $u$ и $v$, затем выполним интегрирование по частям.

$=x \ln x-\int d x=x \ln x-x+C=x(\ln x-1)+C$

Ответ. $\int \ln x d x=x(\ln x-1)+C$

Пример

Задание. Найти интеграл $\int \arcsin x d x$

Решение. В исходном интеграле выделим функции $u$ и $v$, затем выполним интегрирование по частям. Для решения данного интеграла эту операцию надо повторить 2 раза.

$=x \arcsin x-\int \frac{-t d t}{\sqrt{t^{2}}}=x \arcsin x+\int \frac{t d t}{t}=x \arcsin x+\int d t=$

$=x \arcsin x+t+C=x \arcsin x+\sqrt{1-x^{2}}+C$

Ответ. $\int \arcsin x d x=x \arcsin x+\sqrt{1-x^{2}}+C$

3) $\int e^{k x+b} \sin (c x+f) d x$ ; $\int e^{k x+b} \cos (c x+f) d x$

В данном случае в качество $u$ берется либо экспонента, либо тригонометрическая функция . Единственным условием есть то, что при дальнейшем применении формулы интегрирования по частям в качестве функции $u$ берется та же функция, то есть либо экспонента, либо тригонометрическая функция соответственно.

Пример

Задание. Найти интеграл $\int e^{2 x+1} \sin x d x$

Решение. В исходном интеграле выделим функции $u$ и $v$, затем выполним интегрирование по частям.

$=-e^{2 x+1} \cos x-\int(-\cos x) \cdot \frac{e^{2 x+1}}{2} d x=$

Вычислить первообразные функции мы можем не всегда, но задача на дифференцирование может быть решена для любой функции. Именно поэтому единого метода интегрирования, который можно использовать для любых типов вычислений, не существует.

В рамках данного материала мы разберем примеры решения задач, связанных с нахождением неопределенного интеграла, и посмотрим, для каких типов подынтегральных функций подойдет каждый метод.

Метод непосредственного интегрирования

Основной метод вычисления первообразной функции – это непосредственное интегрирование. Это действие основано на свойствах неопределенного интеграла, и для вычислений нам понадобится таблица первообразных. Прочие методы могут лишь помочь привести исходный интеграл к табличному виду.

Пример 1

Вычислите множество первообразных функции f (x) = 2 x + 3 2 · 5 x + 4 3 .

Решение

Для начала изменим вид функции на f (x) = 2 x + 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 .

Мы знаем, что интеграл суммы функций будет равен сумме этих интегралов, значит:

∫ f (x) d x = ∫ 3 2 · 5 x + 4 3 = 2 x + 3 2 · 5 x + 4 1 3 d x = ∫ 3 2 · 5 x + 4 1 3 d x

Выводим за знак интеграла числовой коэффициент:

∫ f (x) d x = ∫ 2 x d x + ∫ 3 2 (5 x + 4) 1 3 d x = = ∫ 2 x d x + 2 3 · ∫ (5 x + 4) 1 3 d x

Чтобы найти первый интеграл, нам нужно будет обратиться к таблице первообразных. Берем из нее значение ∫ 2 x d x = 2 x ln 2 + C 1

Чтобы найти второй интеграл, потребуется таблица первообразных для степенной функции ∫ x p · d x = x p + 1 p + 1 + C , а также правило ∫ f k · x + b d x = 1 k · F (k · x + b) + C .

Следовательно, ∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

У нас получилось следующее:

∫ f (x) d x = ∫ 2 x d x + 3 2 · ∫ 5 x + 4 1 3 d x = = 2 x ln 2 + C 1 + 3 2 · 3 20 · (5 x + 4) 4 3 + C 2 = = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

причем C = C 1 + 3 2 C 2

Ответ: ∫ f (x) d x = 2 x ln 2 + 9 40 · 5 x + 4 4 3 + C

Непосредственному интегрированию с применением таблиц первообразных мы посвятили отдельную статью. Рекомендуем вам ознакомиться с ней.

Метод подстановки

Такой метод интегрирования заключается в выражении подынтегральной функции через новую переменную, введенную специально для этой цели. В итоге мы должны получить табличный вид интеграла или просто менее сложный интеграл.

Этот метод очень полезен, когда нужно интегрировать функции с радикалами или тригонометрические функции.

Пример 2

Вычислите неопределенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Добавим еще одну переменную z = 2 x - 9 . Теперь нам нужно выразить x через z:

z 2 = 2 x - 9 ⇒ x = z 2 + 9 2 ⇒ d x = d z 2 + 9 2 = z 2 + 9 2 " d z = 1 2 · z d z = z d z

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9

Берем таблицу первообразных и узнаем, что 2 ∫ d z z 2 + 9 = 2 3 a r c t g z 3 + C .

Теперь нам нужно вернуться к переменной x и получить ответ:

2 3 a r c t g z 3 + C = 2 3 a r c t g 2 x - 9 3 + C

Ответ: ∫ 1 x 2 x - 9 d x = 2 3 a r c t g 2 x - 9 3 + C .

Если нам приходится интегрировать функции с иррациональностью вида x m (a + b x n) p , где значения m , n , p являются рациональными числами, то важно правильно составить выражение для введения новой переменной. Подробнее об этом читайте в статье, посвященной интегрированию иррациональных функций.

Как мы говорили выше, метод подстановки удобно использовать, когда требуется интегрировать тригонометрическую функцию. Например, с помощью универсальной подстановки можно привести выражение к дробно рациональному виду.

Этот метод объясняет правило интегрирования ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C .

Добавляем еще одну переменную z = k · x + b . У нас получается следующее:

x = z k - b k ⇒ d x = d z k - b k = z k - b k " d z = d z k

Теперь берем получившиеся выражения и добавляем их в интеграл, заданный в условии:

∫ f (k · x + b) d x = ∫ f (z) · d z k = 1 k · ∫ f (z) d z = = 1 k · F z + C 1 = F (z) k + C 1 k

Если же мы примем C 1 k = C и вернемся к исходной переменной x , то у нас получится:

F (z) k + C 1 k = 1 k · F k x + b + C

Метод подведения под знак дифференциала

Это метод основывается на преобразовании подынтегрального выражения в функцию вида f (g (x)) d (g (x)) . После этого мы выполняем подстановку, вводя новую переменную z = g (x) , находим для нее первообразную и возвращаемся к исходной переменной.

∫ f (g (x)) d (g (x)) = g (x) = z = ∫ f (z) d (z) = = F (z) + C = z = g (x) = F (g (x)) + C

Чтобы быстрее решать задачи с использованием этого метода, держите под рукой таблицу производных в виде дифференциалов и таблицу первообразных, чтобы найти выражение, к которому надо будет приводится подынтегральное выражение.

Разберем задачу, в которой нужно вычислить множество первообразных функции котангенса.

Пример 3

Вычислите неопределенный интеграл ∫ c t g x d x .

Решение

Преобразуем исходное выражение под интегралом с помощью основных тригонометрических формул.

c t g x d x = cos s d x sin x

Смотрим в таблицу производных и видим, что числитель можно подвести под знак дифференциала cos x · d x = d (sin x) , значит:

c t g x d x = cos x d x sin x = d sin x sin x , т.е. ∫ c t g x d x = ∫ d sin x sin x .

Допустим, что sin x = z , в таком случае ∫ d sin x sin x = ∫ d z z . Согласно таблице первообразных, ∫ d z z = ln z + C . Теперь вернемся к исходной переменной ∫ d z z = ln z + C = ln sin x + C .

Все решение в кратком виде можно записать так:

∫ с t g x d x = ∫ cos x d x sin x = ∫ d sin x sin x = s i n x = t = = ∫ d t t = ln t + C = t = sin x = ln sin x + C

Ответ: ∫ с t g x d x = ln sin x + C

Метод подведения под знак дифференциала очень часто используется на практике, поэтому советуем вам прочесть отдельную статью, посвященную ему.

Метод интегрирования по частям

Этот метод основывается на преобразовании подынтегрального выражения в произведение вида f (x) d x = u (x) · v " x d x = u (x) · d (v (x)) , после чего применяется формула ∫ u (x) · d (v (x)) = u (x) · v (x) - ∫ v (x) · d u (x) . Это очень удобный и распространенный метод решения. Иногда частичное интегрирование в одной задаче приходится применять несколько раз до получения нужного результата.

Разберем задачу, в которой нужно вычислить множество первообразных арктангенса.

Пример 4

Вычислите неопределенный интеграл ∫ a r c t g (2 x) d x .

Решение

Допустим, что u (x) = a r c t g (2 x) , d (v (x)) = d x , в таком случае:

d (u (x)) = u " (x) d x = a r c t g (2 x) " d x = 2 d x 1 + 4 x 2 v (x) = ∫ d (v (x)) = ∫ d x = x

Когда мы вычисляем значение функции v (x) , прибавлять постоянную произвольную С не следует.

∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2

Получившийся интеграл вычисляем, используя метод подведения под знак дифференциала.

Поскольку ∫ a r c t g (2 x) d x = u (x) · v (x) - ∫ v (x) d (u (x)) = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 , тогда 2 x d x = 1 4 d (1 + 4 x 2) .

∫ a r c t g (2 x) d x = x · a r c t g (2 x) - ∫ 2 x d x 1 + 4 x 2 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C 1 = = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C

Ответ: ∫ a r c t g (2 x) d x = x · a r c t g (2 x) - 1 4 ln 1 + 4 x 2 + C .

Главная сложность применения такого метода – это необходимость выбирать, какую часть брать за дифференциал, а какую – за функцию u (x) . В статье, посвященной методу интегрирования по частям, даны некоторые советы по этому вопросу, с которыми следует ознакомиться.

Если нам требуется найти множество первообразных дробно рациональной функции, то нужно сначала представить подынтегральную функцию в виде суммы простейших дробей, а потом интегрировать получившиеся дроби. Подробнее см. статью об интегрировании простейших дробей.

Если мы интегрируем степенное выражение вида sin 7 x · d x или d x (x 2 + a 2) 8 , то нам будут полезны рекуррентные формулы, которые могут постепенно понижать степень. Они выводятся с помощью последовательного многократного интегрирования по частям. Советуем прочитать статью «Интегрирование с помощью рекуррентных формул.

Подведем итоги. Для решения задач очень важно знать метод непосредственного интегрирования. Другие методы (подведение под знак дифференциала, подстановка, интегрирование по частям) также позволяют упростить интеграл и привести его к табличному виду.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

>> Методы интегрирования

Основные методы интегрирования

Определение интеграла, определенный и неопределенный интеграл, таблица интегралов, формула Ньютона-Лейбница, интегрирование по частям, примеры вычисления интегралов.

Неопределенный интеграл

Функция F(x), дифференцируемая в данном промежутке X, называется первообразной для функции f(x), или интегралом от f(x), если для всякого x ∈X справедливо равенство:

F " (x) = f(x). (8.1)

Нахождение всех первообразных для данной функции называется ее интегрированием. Неопределенным интегралом функции f(x) на данном промежутке Х называется множество всех первообразных функций для функции f(x); обозначение -

Если F(x) - какая-нибудь первобразная для функции f(x), то ∫ f(x)dx = F(x) + C, (8.2)

где С- произвольная постоянная.

Таблица интегралов

Непосредственно из определения получаем основные свойства неопределенного интеграла и список табличных интегралов:

1) d∫f(x)dx=f(x)

2)∫df(x)=f(x)+C

3) ∫af(x)dx=a∫f(x)dx (a=const)

4) ∫(f(x)+g(x))dx = ∫f(x)dx+∫g(x)dx

Список табличных интегралов

1. ∫x m dx = x m+1 /(m + 1) +C; (m ≠ -1)

3.∫a x dx = a x /ln a + C (a>0, a ≠1)

4.∫e x dx = e x + C

5.∫sin x dx = cosx + C

6.∫cos x dx = - sin x + C

7. = arctg x + C

8. = arcsin x + C

10. = - ctg x + C

Замена переменной

Для интегрирования многих функций применяют метод замены переменной или подстановки, позволяющий приводить интегралы к табличной форме.

Если функция f(z) непрерывна на [α,β], функция z =g(x) имеет на непрерывную производную и α ≤ g(x) ≤ β, то

∫ f(g(x)) g " (x) dx = ∫f(z)dz, (8.3)

причем после интегрирования в правой части следует сделать подстановку z=g(x).

Для доказательства достаточно записать исходный интеграл в виде:

∫ f(g(x)) g " (x) dx = ∫ f(g(x)) dg(x).

Например:

1)

2) .

Метод интегрирования по частям

Пусть u = f(x) и v = g(x) - функции, имеющие непрерывные . Тогда, по произведения,

d(uv))= udv + vdu или udv = d(uv) - vdu.

Для выражения d(uv) первообразной, очевидно, будет uv, поэтому имеет место формула:

∫ udv = uv - ∫ vdu (8.4.)

Эта формула выражает правило интегрирования по частям . Оно приводит интегрирование выражения udv=uv"dx к интегрированию выражения vdu=vu"dx.

Пусть, например, требуется найти ∫xcosx dx. Положим u = x, dv = cosxdx, так что du=dx, v=sinx. Тогда

∫xcosxdx = ∫x d(sin x) = x sin x - ∫sin x dx = x sin x + cosx + C.

Правило интегрирования по частям имеет более ограниченную область применения, чем замена переменной. Но есть целые классы интегралов, например,

∫x k ln m xdx, ∫x k sinbxdx, ∫ x k cosbxdx, ∫x k e ax и другие, которые вычисляются именно с помощью интегрирования по частям.

Определенный интеграл

Понятие определенного интеграла вводится следующим образом. Пусть на отрезке определена функция f(x). Разобьем отрезок [ a,b] на n частей точками a= x 0 < x 1 <...< x n = b. Из каждого интервала (x i-1 , x i) возьмем произвольную точку ξ i и составим сумму f(ξ i) Δx i где
Δ x i =x i - x i-1 . Сумма вида f(ξ i)Δ x i называется интегральной суммой , а ее предел при λ = maxΔx i → 0, если он существует и конечен, называется определенным интегралом функции f(x) от a до b и обозначается:

F(ξ i)Δx i (8.5).

Функция f(x) в этом случае называется интегрируемой на отрезке , числа a и b носят название нижнего и верхнего предела интеграла .

Для определенного интеграла справедливы следующие свойства:

4), (k = const, k∈R);

5)

6)

7) f(ξ)(b-a) (ξ∈).

Последнее свойство называется теоремой о среднем значении .

Пусть f(x) непрерывна на . Тогда на этом отрезке существует неопределенный интеграл

∫f(x)dx = F(x) + C

и имеет место формула Ньютона-Лейбница , cвязывающая определенный интеграл с неопределенным:

F(b) - F(a). (8.6)

Геометрическая интерпретация: определенный интеграл представляет собой площадь криволинейной трапеции, ограниченной сверху кривой y=f(x), прямыми x = a и x = b и отрезком оси Ox .

Несобственные интегралы

Интегралы с бесконечными пределами и интегралы от разрывных (неограниченных) функций называются несобственными. Несобственные интегралы I рода - это интегралы на бесконечном промежутке, определяемые следующим образом:

(8.7)

Если этот предел существует и конечен, то называется сходящимся несобственным интегралом от f(x) на интервале [а,+ ∞), а функцию f(x) называют интегрируемой на бесконечном промежутке [а,+ ∞). В противном случае про интеграл говорят, что он не существует или расходится .

Аналогично определяются несобственные интегралы на интервалах (-∞,b] и (-∞, + ∞):

Определим понятие интеграла от неограниченной функции. Если f(x) непрерывна для всех значений x отрезка , кроме точки с, в которой f(x) имеет бесконечный разрыв, то несобственным интегралом II рода от f(x) в пределах от a до b называется сумма:

если эти пределы существуют и конечны. Обозначение:

Примеры вычисления интегралов

Пример 3.30. Вычислить ∫dx/(x+2).

Решение. Обозначим t = x+2, тогда dx = dt, ∫dx/(x+2) = ∫dt/t = ln|t| + C = ln|x+2| + C .

Пример 3.31 . Найти ∫ tgxdx.

Решение. ∫ tgxdx = ∫sinx/cosxdx = - ∫dcosx/cosx. Пусть t=cosx, тогда ∫ tgxdx = -∫ dt/t = - ln|t| + C = -ln|cosx|+C.

Пример 3.32 . Найти ∫dx/sinx

Решение.

Пример 3.33. Найти .

Решение. =

.

Пример 3.34 . Найти ∫arctgxdx.

Решение. Интегрируем по частям. Обозначим u=arctgx, dv=dx. Тогда du = dx/(x 2 +1), v=x, откуда ∫arctgxdx = xarctgx - ∫ xdx/(x 2 +1) = xarctgx + 1/2 ln(x 2 +1) +C; так как
∫xdx/(x 2 +1) = 1/2 ∫d(x 2 +1)/(x 2 +1) = 1/2 ln(x 2 +1) +C.

Пример 3.35 . Вычислить ∫lnxdx.

Решение. Применяя формулу интегрирования по частям, получим:
u=lnx, dv=dx, du=1/x dx, v=x. Тогда ∫lnxdx = xlnx - ∫x 1/x dx =
= xlnx - ∫dx + C= xlnx - x + C.

Пример 3.36 . Вычислить ∫e x sinxdx.

Решение. Обозначим u = e x , dv = sinxdx, тогда du = e x dx, v =∫sinxdx= - cosx → ∫ e x sinxdx = - e x cosx + ∫ e x cosxdx. Интеграл ∫e x cosxdx также интегрируем по частям: u = e x , dv = cosxdx, du=e x dx, v=sinx. Имеем:
∫ e x cosxdx = e x sinx - ∫ e x sinxdx. Получили соотношение ∫e x sinxdx = - e x cosx + e x sinx - ∫ e x sinxdx, откуда 2∫e x sinx dx = - e x cosx + e x sinx + С.

Пример 3.37. Вычислить J = ∫cos(lnx)dx/x.

Решение. Так как dx/x = dlnx, то J= ∫cos(lnx)d(lnx). Заменяя lnx через t, приходим к табличному интегралу J = ∫ costdt = sint + C = sin(lnx) + C.

Пример 3.38 . Вычислить J = .

Решение. Учитывая, что = d(lnx), производим подстановку lnx = t. Тогда J = .

Метод интегрирования по частям применяется, в основном, когда подынтегральная функция состоит из произведения двух сомножителей определенного вида. Формула интегрирования по частям имеет вид:

Она дает возможность свести вычисление заданного интеграла
к вычислению интеграла
, который оказывается более простым, чем данный.

Большую часть интегралов, вычисляемых методом интегрирования по частям, можно разбить на три группы:

1. Интегралы вида
,
,
, где
– многочлен,
– число, не равное нулю

В этом случае через обозначают многочлен

.

2. Интегралы вида
,
,
,
,
, где
– многочлен.

В этом случае через
обозначают
, а всю остальную часть подынтегрального выражения через:

3. Интегралы вида
,
, где
– числа.

В этом случае через обозначают
и применяют формулу интегрирования по частям дважды, возвращаясь в результате к исходному интегралу, после чего исходный интеграл выражается из равенства.

Замечание : В некоторых случаях для нахождения заданного интеграла формулу интегрирования по частям необходимо применять несколько раз. Также метод интегрирования по частям комбинируют с другими методами.

Пример 26.

Найти интегралы методом по частям: а)
; б)
.

Решение.

б)

3.1.4. Интегрирование дробно-рациональных функций

Дробно-рациональной функцией (рациональной дробью) называется функция, равная отношению двух многочленов:
, где
– многочлен степени
,
– многочлен степени .

Рациональная дробь называется правильной , если степень многочлена в числителе меньше степени многочлена в знаменателе, т.е.
, в противном случае (если
) рациональная дробь называется неправильной .

Любую неправильную рациональную дробь можно представить в виде суммы многочлена
и правильной рациональной дроби, разделив числитель на знаменатель по правилу деления многочленов:

,

где
– целая часть от деления,– правильная рациональная дробь,
– остаток от деления.

Правильные рациональные дроби вида:

I. ;

II.
;

III.
;

IV.
,

где ,,
,
,,,
– действительные числа и
(т.е. квадратный трехчлен в знаменателеIII и IV дробей не имеет корней – дискриминант отрицательный) называются простейшими рациональными дробями I, II, III и IV типов .

Интегрирование простейших дробей

Интегралы от простейших дробей четырех типов вычисляются следующим образом.

I)
.

II) ,
.

III) Для интегрирования простейшей дроби III типа в знаменателе выделяют полный квадрат, производят замену
. Интеграл после подстановки разбивают на два интеграла. Первый интеграл вычисляют выделением в числителе производной знаменателя, что дает табличный интеграл, а второй интеграл преобразовывают к виду
, так как
, что также дает табличный интеграл.

;

IV) Для интегрирования простейшей дроби IV типа в знаменателе выделяют полный квадрат, производят замену
. Интеграл после подстановки разбивают на два интеграла. Первый интеграл вычисляют подстановкой
, а второй с помощью рекуррентных соотношений.

Пример 27.

Найти интегралы от простейших дробей:

а)
; б)
; в)
.

Решение.

а)
.

Всякую правильную рациональную дробь, знаменатель которой может быть разложен на множители, можно представить в виде суммы простейших дробей. Разложение на сумму простейших дробей осуществляют методом неопределенных коэффициентов. Он заключается в следующем:


соответствует одна дробь вида;

– каждому множителю знаменателя
соответствует сумма дробей вида


соответствует дробь вида
;

– каждому квадратному множителю знаменателя
соответствует суммадробей вида

где – неопределенные коэффициенты.

Для нахождения неопределенных коэффициентов правую часть в виде суммы простейших дробей приводят к общему знаменателю и преобразовывают. В результате получается дробь с тем же знаменателем, что и в левой части равенства. Затем отбрасывают знаменатели и приравнивают числители. В результате получается тождественное равенство, в котором левая часть – многочлен с известными коэффициентами, а правая часть – многочлен с неопределенными коэффициентами.

Существует два способа определения неизвестных коэффициентов: метод неопределенных коэффициентов и метод частных значений.

Метод неопределенных коэффициентов.

Т.к. многочлены тождественно равны, то равны коэффициенты при одинаковых степенях . Приравнивая коэффициенты при одинаковых степеняхв многочленах левой и правой частей, получим систему линейных уравнений. Решая систему, определяем неопределенные коэффициенты.

Метод частных значений.

Т.к. многочлены тождественно равны, то, подставляя вместо в левую и правую части любое число, получим верное равенство, линейное относительно неизвестных коэффициентов. Подставляя столько значений, сколько неизвестных коэффициентов, получим систему линейных уравнений. Вместов левую и правую части можно подставлять любые числа, однако более удобно подставлять корни знаменателей дробей.

После нахождения значений неизвестных коэффициентов, исходная дробь записывается в виде суммы простейших дробей в подынтегральное выражение и осуществляется ранее рассмотренное интегрирование по каждой простейшей дроби.

Схема интегрирования рациональных дробей:

1. Если подынтегральная дробь неправильная, то необходимо представить ее в виде суммы многочлена и правильной рациональной дроби (т.е. разделить многочлен числителя на многочлен знаменателя с остатком). Если подынтегральная дробь правильная сразу переходим ко второму пункту схемы.

2. Разложить знаменатель правильной рациональной дроби на множители, если это возможно.

3. Разложить правильную рациональную дробь на сумму простейших рациональных дробей, используя метод неопределенных коэффициентов.

4. Проинтегрировать полученную сумму многочлена и простейших дробей.

Пример 28.

Найти интегралы от рациональных дробей:

а)
; б)
; в)
.

Решение.

а)
.

Т.к. подынтегральная функция неправильная рациональная дробь, то выделим целую часть, т.е. представим ее в виде суммы многочлена и правильной рациональной дроби. Разделим многочлен в числителе на многочлен в знаменателе уголком.

Исходный интеграл примет вид:
.

Разложим правильную рациональную дробь на сумму простейших дробей c помощью метода неопределенных коэффициентов:

, получаем:



Решая систему линейных уравнений, получим значения неопределенных коэффициентов: А = 1; В = 3.

Тогда искомое разложение имеет вид:
.

=
.

б)
.

.

Отбросим знаменатели и приравняем левую и правую части:

Приравнивая коэффициенты при одинаковых степенях , получаем систему:





Решая систему из пяти линейных уравнений, находим неопределенные коэффициенты:

.

Найдем исходный интеграл, учитывая полученное разложение:

.

в)
.

Разложим подынтегральную функцию (правильную рациональную дробь) на сумму простейших дробей с помощью метода неопределенных коэффициентов. Разложение ищем в виде:

.

Приведя к общему знаменателю, получим:

Отбросим знаменатели и приравняем левую и правую части:

Для нахождения неопределенных коэффициентов применим метод частных значений. Придадим частные значения , при которых множители обращаются в нуль, т. е. подставим эти значения в последнее выражение и получим три уравнения:


;
;


;
;


;
.

Тогда искомое разложение имеет вид:

Найдем исходный интеграл, учитывая полученное разложение: